
2.1 Introduction 

The load flow analysis is a very important and fundamental tool in power 
system analysis. Its results play the major role during the operational stages 
of any system for its control and economic schedule, as well as during the 
expansion and design stages. The purpose of any load flow analysis is to 
compute precise steady-state voltages and voltage angles of all buses in the 
network, the real and reactive power flows into every line and transformer, 
under the assumption of known generation and load. The load flow solution also 
gives the initial conditions of the system when the transient behaviour of the 
system is to be studied. In practice it will be required to carry out numerous 
power flow solutions under a variety of conditions.

2.2  Bus Classification 

 (i) Load bus: A bus where there is only load connected and no 
generation exists (both PGi and QGi are zero) is called a load bus. At 
this bus real power (PDi) and reactive power (QDi) are drawn from 
the supply. A load bus is also called a PQ bus, since the real power 
and reactive power are known values at this bus. The other two 
unknown quantities at a load bus are voltage magnitude (|Vi|) and its 
phase angle (di) at the bus. In a power balance equation PDi and QDi 
are treated as negative quantities since generated powers PGi and QGi 
are assumed positive.

 (ii) Voltage controlled bus or generator bus: A voltage controlled 
bus is any bus in the system where the voltage magnitude can be 
controlled. At each bus to which there is an alternator connected, the 
MW generation can be controlled by adjusting the prime mover. In 
other words, the phase angle of the rotor d is directly related to the 
real power generated by the machine. The voltage magnitude can be 
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controlled by adjusting generator excitation. Thus at a generator bus 
the real power generation (PGi) and the voltage magnitude (|Vi|) can 
be specified. The phase angle (di) and the reactive power (QDi) are 
to be determined. The limits on the value of the reactive power are 
also specified. These buses are called PV buses.

 (iii) Slack bus: In a power system network as load flows from the 
generators to the loads through transmission lines, the power loss 
occurs due to the losses in the transmission line conductors. These 
losses when included, we get the power balance relations:
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  where PGi and QGi are the total real and reactive power generations, 
PDi and QDi are the total real and reactive power demands and PL and 
QL are the power losses in the transmission network. The values of 
PGi, QGi, PDi and QDi are either known or estimated. For this reason, 
the slack bus is also known as the reference bus.

Types of Bus Specified 
quantities

Quantities to be 
determined

Slack or swing or reference bus |V |, d P, Q
Generator or voltage controlled
or PV bus P, |V | Q, d

Load bus or PQ bus P, Q |V |, d

2.3 Load Flow Equation

The relationship between node current and voltage in the linear network can 
be described by the following node equation:
  I = YV (2.1)

or  I Y Vi ij j
j

n

=
=

Â
1

  i = 1, 2, 3, ..., n (2.2)

where Ii and Vj are the injected current at bus i and voltage at bus j, respectively.
The voltage at a typical bus i of the system in polar coordinates is given by
  Vi = |Vi |–di = |Vi | (cos di + j sin di) (2.3)
Yij an element of the admittance matrix, is given by
  Yij = |Yij|–qij = |Yij| cos qij + j|Yij| sin qij = Gij + jBij (2.4)
where n is the total number of nodes in the system.
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The complex power injected by the source into the ith bus of a power system is

  S P jQ V Ii i i i i= + = *    i = 1, 2, 3, ..., n (2.5)
The complex conjugate of the above equation,

  P jQ V Ii i i i- = *   i = 1, 2, 3, ..., n (2.6)
We know that

  I Y Vi ij j
j
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Equation (2.6) becomes
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Hence basically, real power
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Reactive power,
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The power flow equations can also be written as follows.
Real power,
  P V V Yi i j ij ij j i= + -Â| | | | | | cos ( )q d d  (2.10)

Reactive power,
  Q V V Yi i j ij ij j i= - + -Â| | | | | | sin ( )q d d  (2.11)

Equations (2.10) and (2.11) comprise the polar form of the load flow 
equations or static load flow equations. They are usually expressed in the 
following forms as mathematical models of the load flow problem:
  Pi = Pi,sch – Pi,calc = (PGi – PDi) – Pi,calc (2.12)
  Qi = Qi,sch – Qi,calc = (QGi – QDi) – Qi,calc (2.13)
where Pi,sch, Qi,sch are the specified active and reactive powers at node i based 
on the above two simultaneous equations. The load flow problem can be 
roughly summarized as: for specified Pi,sch and Qi,sch, find the voltage vector 
|Vi| and di such that the magnitudes of the power errors Pi and Qi are less 
than the acceptable tolerance.

The functions Pi and Qi of Eqs. (2.10) and (2.11) are nonlinear functions 
of the state variables |Vi| and di. This static load flow equations are of such 
complexity that it is not possible to obtain the exact analytical solution. Hence, 
the power flow calculations usually employ iterative techniques.
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2.4 Load Flow Methods

The iterative techniques are:
 1. Gauss–Seidel method
 2. Newton–Raphson method
 3. Fast decoupled method

2.5 Gauss–Seidel Method

The load flow problem formulated as a set of nonlinear algebraic equations 
can be solved by an iterative algorithm called the Gauss–Seidel method.

2.5.1 Gauss–Seidel Method When PV Buses are Absent

We have chosen the Gauss–Seidel method first because of its simplicity. Now 
we shall consider the case when the generator buses or voltage controlled buses 
or PV buses are absent. This means we have n – 1 load buses or PQ buses, 
the remaining one being the slack bus.

Computational procedure
 1. Form the bus admittance matrix of the network by direct inspection 

method, selecting the ground as reference [formation of Ybus].
 2. If the slack bus is not specified, select one of the generator buses as 

the slack bus. The voltage at the slack bus is assumed as Vi = V + j0.0 
[selection of the slack bus].

 3. Assume initial values of voltages for all buses except the slack bus. 
Vi

(0) = 1 + j0.0 (flat start voltage).
 4. Set convergence criterion = e, i.e. if the largest of absolute of the 

residues exceeds the convergence criterion the process is repeated, 
otherwise it is terminated.

 5. Set iteration count k = 0.
 6. Bus count i = 1. If i is the slack bus, then there will be an increment 

in the bus count.
 7. Solve the voltage equation for bus i as we know that
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 8. Calculate the change in bus voltage

  Vi
k+1 = (Vi)k+1 – (Vi)k (2.15)

 9. Acceleration of convergence: The process of convergence in the 
Gauss–Seidel method is slow as it requires larger number of iterations 
to obtain the solution. In this method, convergence can be increased by 
using the acceleration factor, denoted by a. In power flow studies, a is 
generally set about 1.6 and cannot exceed 2 if convergence is to occur.

  Therefore,
  Vi

k
, acc

+1 = (Vi)k + a Vi
k+1 (2.16)

  Calculate the bus voltages, i.e. Vi
k+1 for all the buses except the slack 

bus, where i = 1, 2, 3, ..., n. 
 10. Repeat the iterating process until change in voltage (Vi) for all the 

buses are within the specified or within the tolerance.
 11. Finally calculate the power flow and power losses.

  Current and power flows
  i Æ j
 Iij = IL + Ii0 = yij(Vi – Vj) + yi0Vi

 Sij = ViIij
* = Vi

2(yij + yi0)* – Vi yij
*Vj

*

  j Æ i 
 Iji = –IL + Ij0 = yij(Vj – Vi) + yj0Vj

 Sji = VjIij
* = Vj

2(yij + yj0)* – Vj yij
*Vi

*

  Power loss
  Slossij = Sij + Sji

  This completes the load flow study. Finally, in Figure 2.1 all the 
computational steps are summarized in the detailed flow chart.
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Figure 2.1 Flow chart for Gauss–Seidel method when PV buses are absent.

EXAMPLE 2.1 The per unit admittances are indicated at the diagram and 
the bus data are given in Table 2.1. Determine the voltages at buses 2 and 3 
after the first iteration using the Gauss–Seidel method. Assume a = 1.6.
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Table 2.1 Bus data

Bus 
No.

Bus 
type

Generation
(per unit)

Load
(per unit)

Bus  
voltage

PG QG PD QD V d
1 Slack — — — — 1.02 0
2 PQ 0.25 0.15 0.5 0.25 — —
3 PQ 0 0 0.6 0.3 — —

Solution: Form the Ybus

 Y11 = y12 + y13 = – j3 + (– j4) = –j7
 Y12 = Y21 = –y12 = – (– j3) = j3
 Y13 = Y31 = –y13 = –(– j4) = j4
 Y22 = y21 + y23 = – j3 + (– j5) = – j8
 Y23 = Y32 = –y23 = –(– j5) = j5
 Y33 = y31 + y32 = – j4 + (– j5) = – j9
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7 3 4
3 8 5
4 5 9

At bus 2, P2 = PG2 – PD2 = 0.25 – 0.5 = –0.25 p.u.
 Q2 = QG2 – QD2 = 0.15 – 0.25 = –0.1 p.u.

At bus 3, P3 = PG3 – PD3 = 0 – 0.6 = –0.6 p.u.
 Q3 = QG3 – QD3 = 0 – 0.3 = –0.3 p.u.
First iteration
Set k = 0, bus 1 is the slack bus.
  V1

0 = V1
1 = V1

2 = V1
3 =  = 1.02 + j0.0

Assume a flat start voltage for PQ buses.

  V V2
0

3
01 0 1 0= =– –;

The voltage at bus 2 is

 (V2)1 = 1
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  = 0.995 – j0.03125
 V2

1 = (V2)1 – (V2)0 = (0.995 – j0.03125) – (1 + j0.0) = –0.005 – j0.03125
 V1

2,acc = (V2)0 + a V2
1 = (1 + j0.0) + 1.6  (–0.005 – j0.03125)

  = 0.992 – j0.0499
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The voltage at bus 3 is

 (V3)1 = 1
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3 3
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  = 0.971 – j0.0944
 V3

1 = (V3)1 – (V3)0 = (0.971 – j0.0944) – (1 + j0.0) = –0.029 – j0.0944

 V3
1

,acc = (V3)0 + a V3
1 = (1 + j0.0) + 1.6  (–0.029 – j0.0944)

  = 0.9536 – j0.1514

The bus voltages at the end of the first iteration are

 V1
1 = 1.02 + j0

 V2
1 = 0.992 – j0.0499 

 V3
1 = 0.9536 – j0.1514

EXAMPLE 2.2 The system data for a load flow solution are given in 
Tables 2.2 and 2.3. Determine the voltages at the end of the first iteration 
using the Gauss–Seidel method. Take a = 1.6.

Table 2.2 Line admittances

Bus code Admittance
1–2 2 – j8.0
1–3 1 – j4.0
2–3 0.666 – j2.664
2–4 1 – j4.0
3–4 2 – j8.0

Table 2.3 Schedule of active and reactive powers

Bus code P in p.u. Q in p.u. V in p.u. Remarks
1 — — 1.06 Slack
2 0.5 0.2 1 + j0.0 PQ
3 0.4 0.3 1 + j0.0 PQ
4 0.3 0.1 1 + j0.0 PQ

Solution:
 Y11 = y12 + y13 = (2 – j8) + (1 – j4) = 3 – j12
 Y12 = Y21 = –y12 = –(2 – j8) = –2 + j8
 Y13 = Y31 = –y13 = –(1 – j4) = –1 + j4
 Y22 = y21 + y23 + y24 = (2 – j8) + (0.666 – j2.664) + (1 – j4)
  = 3.666 – j14.664
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 Y23 = Y32 = –y23 = –(0.666 – j2.664) = –0.666 + j2.664
 Y24 = Y42 = –y24 = –(1 – j4) = –1 + j4
 Y33 = y31 + y32 + y34 = (1 – j4) + (0.666 – j2.664) + (2 – j8)
  = 3.666 – j14.664
 Y34 = Y43 = –y34 = –(2 – j8) = –2 + j8
 Y44 = y42 + y43 = (1 – j4) + (2 – j8) = 3 – j12

  Y

j j j
j j j j

bus =

- - + - +
- + - - + - +
-

3 12 2 8 1 4 0
2 8 3 666 14 664 0 666 2 664 1 4. . . .
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At bus 2, P2 = PG2 – PD2 = 0 – 0.5 = –0.5 p.u.
 Q2 = QG2 – QD2 = 0 – 0.2 = –0.2 p.u.

At bus 3, P3 = PG3 – PD3 = 0 – 0.4 = –0.4 p.u.
 Q3 = QG3 – QD3 = 0 – 0.3 = –0.3 p.u.

At bus 4, P4 = PG4 – PD4 = 0 – 0.3 = –0.3 p.u.
 Q4 = QG4 – QD4 = 0 – 0.1 = –0.1 p.u.
First iteration

Set k = 0, bus 1 is slack bus.
  V1

0 = V1
1 = V1

2 = V1
3 =  = 1.06 + j0.0

Assume a flat start voltage for PQ buses

  V V V2
0

3
01 0 1 1 0= = =– – 0; –4

0;

The voltage at bus 2 is
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  = 1.01187 – j0.02888

 DV2
1  = (V2)1 – (V2)0 = (1.01187 – j0.02888) – (1 + j0.0)

  = 0.01187 – j0.02888

 V1
2,acc = ( ) ( . ) . ( . . )V V j j2

0
2
1 1 0 0 1 6 0 01187 0 02888+ = + + -a D ¥

  = 1.01896 – j0.04621



82 Electrical Power Systems: Analysis, Security and Deregulation

The voltage at bus 3 is
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  = 0.9926 – j0.026

 DV3
1  = (V3)1 – (V3)0 = (0.9926 – j0.026) – (1 + j0.0)

  = –7.4  10–3 – j0.026

 V1
3,acc = ( ) ( . ) . ( . . )V V j j3
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  = 0.988 – j0.0416
The voltage at bus 4 is
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  = 0.9825 – j0.06

 DV4
1  = (V4)1 – (V4)0 = (0.9825 – j0.06) – (1 + j0.0)

  = –0.0175 – j0.06

 V1
4,acc = ( ) ( . ) . ( . . )V V j j4

0
4
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  = 0.9721 – j0.096
The bus voltages at the end of the first iteration are

 V1
1  = 1.06 + j0

 V2
1  = 1.01896 – j0.04621

 V3
1  = 0.988 – j0.0416

 V4
1  = 0.9721 – j0.096

EXAMPLE 2.3 Figure 2.2 shows the one line diagram of a simple three 
bus system with generation at bus 1. The magnitude of voltage at a bus 1 is 
adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are as marked in 
the diagram. The line impedances are marked in p.u. on a 100 MVA base and 
the line charging susceptances are neglected.
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 (a) Using the Gauss–Seidel method, determine the phasor values of the 
voltages at the load buses 2 and 3 (P-Q buses) accurate to decimal places.

 (b) Verify the result with Power World Simulator and PSS/E.

Figure 2.2 One line diagram of a simple three bus system.

Solution: (a) To form the Ybus

 y12 = 
1 1

0 02 0 04
10 20

12z j
j=

+
= -

. .
 

 y13 = 
1 1

0 01 0 03
10 30

13z j
j=

+
= -

. .

 y23 = 
1 1

0 0125 0 025
16 32

23z j
j=

+
= -

. .

 Y11 = y12 + y13 = (10 – j20) + (10 – j30) = 20 – j50
 Y12 = Y21 = –y12 = –(10 – j20) = –10 + j20
 Y13 = Y31 = –y13 = –(10 – j30) = –10 + j30
 Y22 = y21 + y23 = (10 – j20) + (16 – j32) = 26 – j52
 Y23 = Y32 = –y23 = –(16 – j32) = –16 + j32
 Y33 = y31 + y32 = (10 – j30) + (16 – j32) = 26 – j62

  Y
j j j

j j j

j j
bus =

- - + - +
- + - - +
- + - +

20 50 10 20 10 30

10 20 26 52 16 32
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At bus 2, P2 = P PG D2 2 0
256 6

100
2 566- = - = -.
. p.u.  

 Q2 = Q QG D2 2 0
110 2

100
1 102- = - = -.

. p.u.

At bus 3, P3 = P PG D3 3 0
138 6

100
1 386- = - = -.

. p.u.

 Q3 = Q QG D3 3 0
45 2

100
0 452- = - = -.
. p.u.
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First iteration
Set k = 0, bus 1 is the slack bus.

  V V V V j1
0

1
1

1
2

1
3 1 05 0 0= = = = = + . .  

Assume a flat start voltage for PQ buses

  V V2
0

3
01 0 1 0= =– –;

The voltage at bus 2 is
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  = 0.9825 – j0.0310
The voltage at bus 3 is

 (V3)1 = 
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The bus voltages at the end of the first iteration are

 V1
1  = 1.05 + j0

 V2
1  = 0.9825 – j0.0310 

 V3
1  = 1.0011 – j0.0353

 (b) Verify the result using Power World Simulator (PWS): The one 
line diagram of a simple bus system is drawn in PWS, which is shown 
in Figure 2.3.

Figure 2.3 One line diagram of a simple three bus system (in PWS).
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The first step is the formation of [Ybus] using the inspection method. The 
calculated [Ybus] values are given in Figure 2.4. Since the given problem is a 
three bus system, the size of [Ybus] is 3  3 matrix.

Figure 2.4 Ybus result.

There are three possible methods for executing load flow studies in Power 
World Simulator (PWS). 

Gauss–Seidel method
Before executing this method, the number of iterations is to be fixed as 1 in 
simulator options ribbon to get the first iteration result. This method is executed 
by pressing the icon Gauss–Seidel power flow available in tools ribbon. The 
power flows and voltages are given in Figure 2.5 for the 1st iteration.

Figure 2.5 Power flow results and voltages—1st iteration.

Now change the number of iterations as 2 in simulator options ribbon for 
getting the results of the second iteration and execute Gauss–Seidel power 
flow. The results are shown in Figure 2.6 for iteration 2.
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Figure 2.6 Power flow results and voltages—2nd iteration.

Figure 2.6 indicates that there are mismatches in all three bus voltages. So, 
the execution should be continued until converged solution is obtained. This 
method gives converged results after 8th iterations for this problem. Before 
executing the program, the numbers of iterations have to be changed as 10. 
This is shown in Figure 2.7.

Figure 2.7 Details of convergence and iterations.

The final solutions are obtained after 8th iterations and it is shown in 
Figure 2.8.
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Figure 2.8 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in 
Figure 2.9.

Figure 2.9 One line diagram of a simple three bus system (in PSS/E).

Once the data are entered in the software it can be executed by the above 
three power flow methods. Figure 2.10 shows the converged results obtained 
by the Gauss–Seidel method. This window is generated from bus based report.

2.5.2 Gauss–Seidel Method When PV Buses are Present

Some of the buses in an n bus power system are PV buses where P and V are 
specified but Q and d are unknowns. The calculation strategy of Load flow 
solution with PV buses is different for PQ buses. Let the bus be numbered as 
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 i = 1 slack bus
 i = 2, 3, 4, ..., n PQ buses
 i = n + 1, n + 2, ..., n PV buses

Computational procedure
At the voltage controlled buses, bus voltages are specified and reactive power 
limits are also specified, i.e. |Vi | =   |Vi |spec; Qi,min < Qi < Qi,max

 1. Form the bus admittance matrix of the network by the direct inspection 
method, selecting the ground as reference [formation of Ybus].

 2. If slack bus is not specified, select one of the generator buses as the 
slack bus. The voltage at the slack bus is assumed as Vi = V + j0.0 
[selection of the slack bus].

 3. Assume initial values of voltages for all buses except the slack bus. 

V ji
( ) .0 1 0 0= +

 4. For PV buses only angles di
( )0  have to be assumed.

 5. Set convergence criterion = e, i.e. if the largest of absolute of the 
residues exceeds the convergence criterion the process is repeated, 
otherwise it is terminated.

 6. Set iteration count k = 0.
 7. Bus count i = 1.
 8. Check type of buses
  (a) If ith bus is PQ bus, go to step 10.
  (b) If ith bus is PV bus, go to the next step.

  Set | | | |specV Vi
k

i=
 9. Calculate the reactive power of generator bus using the following 

equation

  Q V Y V V Y Vi
k

i
k

ij j
k

j

i

i
k

ij j
k

j

n
+ +

=

-

=

= - -
È

Î
Í
Í

˘

˚
Â Â1 1

1

1

1

im ( ) ( ) ( ) ( )* * ˙̇
˙

 (2.17) 

  (a) If the calculated reactive power is within limits, then this bus can 
be treated as PV bus and set Q Qi i

k= +1 .
  (b) If the calculated reactive power violates the limits, then this bus 

can be treated as PQ bus and set if 

   (i) Q Q Q Qi
k

i i i
+ < =1

,min ,min, then

   (ii) Q Q Q Qi
k

i i i
+ > =1

,max ,max, then

 10. Solve the voltage equation for bus i as, we know that

    Pi – jQ V Y Vi i ij j
j

n

=
=

Â*

1
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P jQ

V
i i

i

-
*  = V Y Y Vi ij

j

n

ij j
j

n

= =
Â Â-

0 1

  j π i

    Vi = 
1

1
Y

P jQ

V
Y V

ii

i i

i
ij j

j

n

j i

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
Â*

π
   or

     Vi = 
1

1

1

1
Y

P jQ

V
Y V Y V

ii

i i

i
ij j

j

i

ij j
j i

n-
- -

È

Î
Í
Í

˘

˚
˙
˙=

-

= +
Â Â*

  Equation (2.14) can be rewritten as

  ( )
( )

( ) ( )
*

V
Y

P jQ

V
Y V Y Vi

k

ii

i i

i
k ij j

k

j

i

ij j
k

j i

n
+ +

=

-

= +

=
-

- -Â Â1 1

1

1

1

1 ÈÈ

Î
Í
Í

˘

˚
˙
˙

 11. Calculate the change in bus voltage

  DV V Vi
k

i
k

i
k+ += -1 1( ) ( )  

 12. Acceleration of convergence: The process of convergence in the 
Gauss–Seidel method is slow as it requires larger number of iterations 
to obtain the solution. In this method, convergence can be increased by 
using the acceleration factor, denoted by a. In power flow studies, a is 
generally set about 1.6 and cannot exceed 2 if convergence is to occur.

  Therefore 
  V V Vi

k
i

k
i
k

, ( )acc
+ += +1 1a D

  Calculate the bus voltages, i.e. Vi
k +1  for all the buses except the slack 

bus, where i = 1, 2, 3, ..., n. 
 13. Repeat the iterating process until change in voltage (Vi) for all the 

buses are within the specified or within the tolerance.
 14. Finally calculate the power flow and power losses. 

  Current and power flows

  i  j
 Iij = IL + Ii0 = yij(Vi – Vj) + yi0Vi

 Sij = V I V y y V y Vi ij i ij i i ij i
* * * *( )= + -2

0
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  j  i
 Iji = IL + Ij0 = yij(Vj – Vi) + yj0Vj

 Sji = V I V y y V y Vj ij j ij j j ij i
* * * *( )= + -2

0

  Power loss
  Slossij = Sij + Sji

  This completes the load flow study. Finally, in Figure 2.11 all the 
computational steps are summarized in the detailed flow chart.

Advantages and Disadvantages of Gauss–Seidel Method

Advantages
 • The calculations are simple and so there is less programming task to 

perform.
 • The memory requirement is small.
 • Useful for the small systems.
Disadvantages
 • Requires a large number of iterations to converge.
 • Not suitable for large systems.
 • Convergence time increases with the size of the system.

EXAMPLE 2.4 A three-bus power system is shown in Figure 2.12. The 
system parameters are given in Table 2.4 and the generation and demand data 
in Table 2.5. The voltage at bus 2 is maintained at l.04 p.u. The maximum 
and minimum reactive power limits of the generation at bus 2 are 35 and 
0 MVAR respectively. Determine one iteration of the load flow solution using 
the Gauss–Seidel iterative method. Assume bus 1 as slack bus and acceleration 
factor a = 1.6.

Table 2.4 Bus code and impedance
Bus code Impedance in p.u. Bus code Line charging admittance 

¢yij

2
 

1–2 0.06 + j0.18 1 j0.05
1–3 0.02 + j0.06 2 j0.06
2–3 0.04 + j0.12 3 j0.06

Table 2.5 Scheduled bus voltages, real and reactive powers of generation and demand

Bus 
no.

Bus voltage Generation Demand
MW MVAR MW MVAR

1 1.06 + j0.0 — — 0 0
2 1.04 + j0.0 20 — 0 0
3 — 0 0 60 25
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Figure 2.11 Flow chart for Gauss–Seidel method when PV buses are present.
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Figure 2.12 Three bus power system.

Solution: To form the Ybus

  y10 = 
¢

+
¢

= + =
y y

j j j12 13

2 2
0 05 0 06 0 11. . .

 y20 = 
¢

+
¢

= + =
y y

j j j21 22

2 2
0 05 0 06 0 11. . .

 y30 = 
¢

+
¢

= + =
y y

j j j31 32

2 2
0 06 0 06 0 12. . .

 y12 = 
1 1

0 06 0 18
1 67 5

12z j
j=

+
= -

. .
.

 y13 = 
1 1

0 02 0 06
5 15

13z j
j=

+
= -

. .

 y23 = 
1 1

0 04 0 12
2 5 7 5

23z j
j=

+
= -

. .
. .

 Y11 = y10 + y12 + y13 = j0.11 + (1.67 – j5) + (5 – j15) = 6.67 – j19.89
 Y12 = Y21 = –y12 = –(1.67 – j5) = –1.67 + j5
 Y13 = Y31 = –y13 = –(5 – j15) = –5 + j15
 Y22 = y20 + y21 + y23 = j0.11 + (1.67 – j5) + (2.5 – j7.5) = 4.17 – j12.39
 Y23 = Y32 = –y23 = –(2.5 – j7.5) = –2.5 + j7.5
 Y33 = y30 + y31 + y32 = j0.12 + (5 – j15) + (2.5 – j7.5) = 7.5 – j22.38

  

Y

j j j

j j jbus =
- - + - +

- + - - +
6 67 19 89 1 67 5 5 15

1 67 5 4 17 12 39 2 5 7 5

. . .

. . . . .

-- + - + -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙5 15 2 5 7 5 7 5 22 38j j j. . . .

At bus 2, P2 = P PG D2 2
20

100
0 0 2- = - = . p.u.

 Q2 = QG2 – QD2 = ? – 0 = ? p.u.

At bus 3, P3 = P PG D3 3 0
60

100
0 6- = - = - . p.u.

 Q3 = Q QG D3 3 0
25

100
0 25- = - = - . p.u.
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First iteration
Set k = 0, Bus 1 is slack bus.

  V V V V j1
0

1
1

1
2

1
3 1 06 0 0= = = = = + . .

  V2 
0  = 1.040

Assume a flat start voltage for PQ buses

  V3 
0  = 10

Determine the voltage at bus 2.
Given the reactive power limit:

  0 MVAR < QG2 < 35 MVAR or 0 p.u. < QG2 < 0.3 p.u.

So to find V2
1 , first Q2

1  is calculated.

 (Qi)k+1 = - -
È

Î
Í
Í

˘

˚
˙
˙

+

=

-

=
Â Âim ( ) ( ) ( ) ( )* *V Y V V Y Vi

k
ij j

k

j

i

i
k

ij j
k

j

n
1

1

1

1

 

 Q2
1  = - + +im [( ) ( ) ( )]* *V Y V V Y V Y V2

0
21 1

1
2
0

22 2
0

23 3
0

 Q2
1  = - + +im [( ) ( )]*V Y V Y V Y V2

0
21 1

1
22 2

0
23 3

0

 Q2
1  = –im [(1.04 – j0) (–1.67 + j5) (1.06 + j0.0) + (4.17 – j12.4)

   (1.04 – j0) + (–2.5 + j7.5) (1 + j0.0)]

 Q2
1  = –im [0.06947 – j0.09984]

 Q2
1  = 0.09984

The value of Q2
1  is within the limits and so the reactive power limit is 

not violated. Therefore bus 2 can be treated as PV bus.
Now to find V2

1

 V2
1  = 

1

22

2 2
1

2
0 21 1

1
23 3

0

Y

P jQ

V
Y V Y V

-
- -

È

Î
Í
Í

˘

˚
˙
˙( )*

 V2
1  = 

1

4 17 12 4

0 2 0 09984

1 04 0 0
1 67 5 1 06 2 5 7 5

. .

. .

. .
( . ) . ( . .

-
-

-
- - + - - +

j

j

j
j j )) ( . )1 0

È
ÎÍ

˘
˚̇

  = 1.0432–0.4985°
 d2

1  = – 0.4985°

We get | | | |specV V j2
1

2
1 1 01 0 4985 1 0399 0 009= = ∞ = +– –2

1d . . . .

The voltage at bus 3 (PQ bus) is

  (V3)1 = 
1

33

3 3

3
0 31 2

1
32 2

1

Y

P jQ

V
Y V Y V

-
- -È

Î
Í

˘

˚
˙( )*

PHI
Comment on Text
AQ: Please check.
Please Change as 0.35 p.u.
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 V3
1  = 

1

7 5 22 38

0 6 0 25

1 0
5 15 1 06

. .

. .
( ) ( . )

-
- +

-
- +È

ÎÍj

j

j
j

   - - + +
˘

˚
˙( . . ) ( . . )2 5 7 5 1 0399 0 009j j

  = 0.9499 + j0.0109

 DV3
1  = (V3)1 – (V3)0 = (0.9499 + j0.0109) – (1 + j0.0)

  = –0.0501 + j0.0109

 V1
3,acc = ( ) + D ¥0V V j j3 3

1 1 0 0 1 6 0 0501 0 0109a = + + - +( . ) . ( . . )

  = 0.91984 – j0.01744
The bus voltages at the end of the first iteration are

 V1
1  = 1.06 + j0

 V2
1  = 1.0399 + j0.009 

 V3
1  = 0.91984 – j0.01744

EXAMPLE 2.5 If the reactive power constraint on generator 2 is 0.2 p.u. 
< QG2 < 0.5 p.u. in the Example 2.4, then find the bus voltages at the end of 
the first iteration. Assume the acceleration factor is 1.6.
Solution: In the previous example we have calculated Q2

1  as

  Q2
1 0 09984= .

This value of reactive power violates the lower limit of QG2. Therefore 
QG2 is fixed at 0.2 p.u. Hence the bus 2 is considered as a load bus.

Now

At bus 2, P2 = P PG D2 2
20

100
0 0 2- = - = . p.u.

 Q2 = QG2 – QD2 = 0.2 – 0 = 0.2 p.u.

At bus 3, P3 = P PG D3 3 0
60

100
0 6- = - = - . p.u.

 Q3 = Q QG D3 3 0
25

100
0 25- = - = - . p.u.

First iteration
Set k = 0, bus 1 is the slack bus.

  V V V V j1
0

1
1

1
2

1
3 1 06 0 0= = = = = + . .

Assume a flat start voltage for PQ buses

 V2
0  = 1–0

 V3
0  = 1–0
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The voltage at bus 2 (PQ bus) is

 V2
1  = 

1

22

2 2
1

2
0 21 1

1
23 3

0

Y

P jQ

V
Y V Y V

-
- -

È

Î
Í
Í

˘

˚
˙
˙( )*

 V2
1  = 1

4 17 12 4

0 2 0 2

1 0 0
1 67 5 1 06 2 5 7 5 1 0

. .

. .

( . )
( . ) . ( . . ) ( .

-
-

-
- - + - - +

j

j

j
j j ))

È
ÎÍ

˘
˚̇

  = 1.0508 + j0.00713
 DV2

1  = (V2)1 – (V2)0 = (1.0508 + j0.00713) – (1 + j0.0)
  = 0.0508 + j0.00713
 V1

2,acc = ( ) + D ¥0V V j j2 2
1 1 0 0 1 6 0 0508 0 00713a = + + +( . ) . ( . . )

  = 1.08128 + j0.0114
The voltage at bus 3 (PQ bus) is

 (V3)1 = 
1

33

3 3

3
0 31 2

1
32 2

1

Y

P jQ

V
Y V Y V

-
- -È

Î
Í

˘

˚
˙( )*

 V3
1  = 

1

7 5 22 38

0 6 0 25

1 0
5 15 1 06

. .

. .
( ) ( . )

-
- +

-
- +È

ÎÍj

j

j
j

   - - + +
˘

˚
˙( . . ) ( . . )2 5 7 5 1 08128 0 0114j j

  = 0.963 + j0.0117
 DV3

1  = (V3)1 – (V3)0 = (0.963 + j0.0117) – (1 + j0.0)
  = –0.037 + j0.0117
 V1

3,acc = ( ) + D ¥0V V j j3 3
1 1 0 0 1 6 0 037 0 0117a = + + - +( . ) . ( . . )

  = 0.9421 – j0.01872
The bus voltages at the end of the first iteration are
 V1

1  = 1.06 + j0
 V2

1  = 1.08128 + j0.0114 
 V3

1  = 0.9421 – j0.01872

2.6 Newton–Raphson Load Flow Method

2.6.1 Introduction

The Newton–Raphson method is a competent algorithm to solve nonlinear 
equations. It transforms the procedure of solving nonlinear equations into the 
procedure of repeatedly solving linear equations. This sequential linearization 
process is the core of the Newton–Raphson method.
  f (x) = 0 (2.18)
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Let us assume that f (x) is continuous and differential at a point x(0), the 
initial guess for the sought root. Assume the real solution x is close to x(0),
  x = x(0) – x(0) (2.19)
where Dx(0) is a correction value of x(0). The following equation embraces to
  f (x(0) – x(0)) = 0 (2.20)

Now expanding the above equation in a Taylor series expansion about 
point  x(0) yields:

 f (x(0) – x(0)) = f x f x x f x
x

( ) ( ) ( )
( )

!
( ) ( ) ( ) ( )

( )
0 0 0 0

0 2

2
- ¢ + ¢¢ -D D  

  + - + =( ) ( )
( )

!
( )

( )

1 00
0

n n
n

f x
x

n

D
 (2.21)

where f (x(0)), , f n(x(0)) are the different order partial derivatives of f (x) at 
x(0). If the initial guess is sufficiently close to the actual solution, the higher 
order terms of the Taylor series expansion could be neglected. Equation (2.21) 
becomes
  f (x(0)) – f (x(0)) x(0) = 0 (2.22)

This is a linear equation in Dx(0) and can be easily solved.
Using x(0) to modify x(0), we can get x(1)

  x(1) = x(0) – x(0) (2.23)
x(1) may be close to the actual solution. Then using x(1) as the new guess 

value, we solve the following equation similar to Eq. (2.22)
   f (x(1)) – f (x(1)) x(1) = 0 (2.24)
Thus x(2) is obtained.
   x(2) = x(1) – x(1) (2.25)
Repeat this procedure to establish the correction equation in the kth iteration:
  f (x(k)) – f (x(k)) x(k) = 0 (2.26)
or
  f (x(k)) = f (x(k)) x(k) (2.27)

The left-hand of the above equation can be considered as the error produced 
by the approximate solution x(k). When f (x(k))  0, Eq. (2.18) is satisfied, so 
x(k) is the solution of the equation.

Now we will extend the Newton’s method to simultaneous nonlinear 
equations. Assume the nonlinear equations with variables x1, x2,  , xn:

  

f x x x

f x x x

f x x x

n

n

n n

1 1 2

2 1 2

1 2

0

0

0

( , , , )

( , , , )

( , , , )









=
=

=

¸

˝
ÔÔ

˛
Ô
Ô

 (2.28)
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Specify the initial guess values of all variables x x xn1
0

2
0 0( ) ( ) ( ), , , . Let x1

(0), 
x2

(0), x3
(0), ..., xn

(0) be the correction values to satisfy the following equations:

  

f x x x x x x

f x x

n n1 1
0

1
0

2
0

2
0 0 0

2 1
0

1

0( , , , )

(

( ) ( ) ( ) ( ) ( ) ( )

( )

- - - =

-

D D D

D



(( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , )

( ,

0
2
0

2
0 0 0

1
0

1
0

2
0

0x x x x

f x x x

n n

n

- - =

- -

D D

D





DD Dx x xn n2
0 0 0 0( ) ( ) ( ), , ) - =

¸

˝

Ô
Ô

˛

Ô
Ô

 (2.29)

Expanding the above equations via the multivariate Taylor series and neglecting 
the higher order terms, we have the following equations:

f x x x
f

x
x

f

xn1 1
0

2
0 0 1

1

0

1
0 1

2

( , , , )( ) ( ) ( )
( )

( )
(
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(2.30)
Here (∂f1/∂x2)(0) is the partial derivative of function f1(x1, x2, , xn) over 
independent variable xj at the point ( , , , )( ) ( ) ( )x x xn1

0
2
0 0
 . Rewrite the above 

equation in the matrix form.

f x x x

f x x x

f x x

n

n

n

1 1
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2
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1
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(2.31)
After solving D D Dx x xn1

0
2
0 0( ) ( ) ( ), , ,  from the above equation, we get

  

x x x

x x x

x x xn n n

1
1

1
0

1
0

2
1

2
0

2
0

1 0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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= -
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Ô
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D

D
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Ô
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x x xn1
1

2
1 1( ) ( ) ( ), , , will approach the actual solution more closely. The updated 

values are used as the new guess to solve the correction equation (2.31) and to 
further correct the variables. In this way the iterative process of the Newton–
Raphson method is formed.

Generally, the correction in the kth iteration can be written as

f x x x

f x x x

f x x

k k
n
k

k k
n
k

n
k

1 1 2

2 1 2

1 2

( , , , )

( , , , )

( ,

( ) ( ) ( )

( ) ( ) ( )

( )







(( ) ( )

( ) ( )

, , )k
n
k

k k

x

f

x

f

x



È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

∂
∂

∂
∂

1

1

1

2





∂
∂

∂
∂

∂
∂

∂
∂

f

x

f

x

f

x

f

x

n

k

k k

n

1

2

1

2

2

2

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ

( )

( ) ( )

¯̃̄

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î

( )

( ) ( ) ( )

k

n
k

n
k

n

n

k
f

x

f

x

f

x

   



∂
∂

∂
∂

∂
∂1 2
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Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

D

D

D

x

x

x

k

k

n
k

1

2

( )

( )
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(2.33)
The above equation can be expressed in the matrix form as
  F = JC (2.34) 
where,

  F =

f x x x

f x x x

f x

k k
n
k

k k
n
k

n
k

1 1 2

2 1 2

1

( , , , )

( , , , )

( ,

( ) ( ) ( )

( ) ( ) ( )

( )







xx xk
n
k

2
( ) ( ), , )

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (2.35)

is the error vector in the kth iteration.

  J =

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ

∂
∂

∂ ∂

∂
∂

f

x

f

x

f

x

f

x

k k

n

k
1

1

1

2

1

2

1

( ) ( ) ( )

∂ ∂


¯̃̄
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

( ) ( ) ( )

( )

k k

n

k

n
k

f

x

f

x

f

x

f

∂
∂

∂
∂

∂
∂

∂

2

2

2

1



   

nn
k

n

n

k

x

f

x∂
∂
∂2

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇

( ) ( )



 (2.36)

is the first derivative matrix and it is called Jacobian matrix.

  C =

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

D

D

D

x

x

x

k

k

n
k

1

2

( )

( )

( )



 (2.37)

is the correction value vector in the kth iteration.
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We also have the equation similar to Eq. (2.32)
  X (k+1) = X (k) – X (k) (2.38) 
The state update vector X (k) is calculated from Eq. (2.33) by taking the 
inverse of the Jacobian matrix. Thus we get
  X (k) = –[J ]–1F (2.39) 
With Eqs. (2.34) and (2.38) solved alternately in each iteration, X (k+1) gradually 
approaches the actual solution. Convergence can be evaluated by the norm of 
the correction value,
  |X (k)| < e (2.40)

2.6.2 Load Flow Solution Using Newton–Raphson 
Method

For large interconnected power systems among the numerous solution methods 
available for load flow analysis, the Newton–Raphson method is considered to 
be the most important. Many advantages are attributed to the Newton–Raphson 
approach. Its convergence characteristics are relatively powerful compared to the 
alternative processes, and very low computing times are achieved when sparse 
network equations are solved by the technique of sparsity programmed ordered 
elimination. The reliability of the Newton–Raphson method is comparatively 
good, since it can solve cases that lead to divergence with the other popular 
processes, but the method is by no means reliable. Failure does not occur on 
some ill-conditioned problems.

The number of iterations required to obtain a solution is independent of 
the system size, but more functional evaluations are required at each iteration. 
Since in the load flow problem real power and magnitude of bus voltage are 
specified for the PV buses, the load flow equation is formulated in the polar 
form.

The load flow equations can be rewritten as follows.
Real power

  P V V Yi
k

i j ij ij j i
j

n
( ) cos ( )= + -

=
Â| | | | | | q d d

1

 (2.41)

Reactive power

  Q V V Yi
k

i j ij ij j i
j

n
( ) sin ( )= - + -

=
Â| | | | | | q d d

1

 (2.42)

We have two equations for each load bus, given by Eqs. (2.41) and (2.42), 
and one equation for each voltage controlled bus, given by Eq. (2.41). Expanding 
Eqs. (2.41) and (2.42) in Taylor’s series about the initial estimate and neglecting 
all higher order terms result in the following set of linear equations.
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 (2.43)

In the above equation, bus 1 is assumed to be the slack bus. The Jacobian 
matrix gives the linearised relationship between small changes in voltage angle 
Ddi

k( )  and voltage magnitude D| |Vi
k( )  with the small changes in real and 

reactive powers DPi
k( )  and DQi

k( ) respectively. The elements of the Jacobian 
matrix are the partial derivatives of Eqs. (2.41) and (2.42), calculated at Ddi

k( )  
and D| |V k

2
( ) .

The above equation can be written as

  
D
D

D
D

P

Q

J J

J J V

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

1 2

3 4

d
| |

 (2.44) 

For the PV buses, the voltage magnitudes are known. Therefore, if m buses 
of the system are voltage controlled equations involving Q and V, and the 
corresponding columns of the Jacobian matrix are eliminated, then there are 
(n – 1) real power constraints and (n – 1 – m) reactive power constraints, and 
the order of the complete Jacobian matrix is (2n – 2 – m)  (2n – 2 – m).

Order of Jacobian matrix J1 is (n – 1)  (n – 1).
Order of Jacobian matrix J2 is (n – 1)  (n – 1 – m).
Order of Jacobian matrix J3 is (n – 1 – m)  (n – 1).
Order of Jacobian matrix J4 is (n – 1 – m)  (n – 1 – m).

Elements of Jacobian matrix J1

 (i) the diagonal elements are 

  
∂
∂

P
V V Yi

i
i j ij ij i j

j i
d

q d d= - +Â| || || | sin ( )
π

 (2.45)

 (ii) the off-diagonal elements are

  
∂
∂

P
V V Yi

j
i j ij ij i jd

q d d= - - +| || || | sin ( )   j  i (2.46)
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Elements of Jacobian matrix J2

 (i) the diagonal elements are 

  
∂
∂

P

V
V Y V Yi

i
i ii ii j ij ij i j

j i
| |

| || | | || |= + - +Â2 cos cos ( )q q d d
π

 (2.47) 

 (ii) the off-diagonal elements are

  
∂

∂
P

V
V Yi

j
i ij ij i j| |

| || |= - +cos ( )q d d   j  i (2.48) 

Elements of Jacobian matrix J3

 (i) the diagonal elements are 

  
∂
∂
Q

V V Yi

i
i j ij ij i j

j i
d

q d d= - +Â| || || | cos ( )
π

 (2.49) 

 (ii) the off-diagonal elements are

  
∂
∂

Q
V V Yi

j
i j ij ij i jd

q d d= - - +| || || | cos ( )   j  i (2.50)

Elements of Jacobian matrix J4

 (i) the diagonal elements are 

  
∂
∂

Q

V
V Y V Yi

i
i ii ii j ij ij i j

j i
| |

| || | | || |= - - - +Â2 sin sin ( )q q d d
π

 (2.51) 

 (ii) the off-diagonal elements are

  
∂
∂

Q

V
V Yi

j
i ij ij i j| |

| || |= - - +sin ( )q d d   j  i (2.52) 

Difference in scheduled to calculated power (power residuals) is given by

 DPi
k[ ]  = P Pi i

k
,

[ ]
sch -  (2.53)

 DQi
k[ ]  = Q Qi i

k
,

[ ]
sch -  (2.54)

The new estimates for the voltage magnitude and angle

  d d di
k

i
k

i
k[ ] [ ] [ ]+ = +1 D  (2.55)

  | | | | | |V V Vi
k

i
k

i
k[ ] [ ] [ ]+ = +1 D  (2.56)

Computation procedure
 1. Set flat start

 • For load buses, set the voltages equal to the slack bus or 10°.
 • For generator buses, set the angles equal to the slack bus or 0°.
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 2. Calculate power mismatch
 • For load buses, calculate Pi

k[ ]  (Eq. (2.41)) and Qi
k[ ]  (Eq. (2.42)) 

injections using the known and estimated system voltages.
 • For generator buses, calculate Pi

k[ ]  (Eq. (2.41)) and DPi
k[ ]  

(Eq. (2.53)).
 3. Form the Jacobian matrix
 • Use the various equations for the partial derivatives with respect 

to the voltage angle and magnitudes (form the Jacobian matrix).
 • The elements of Jacobian matrix (J1, J2, J3 and J4) calculated 

from Eqs. (2.45) to (2.52).
 4. Find the matrix solution
 • Inverse the Jacobian matrix and multiply by the mismatch power.
 • Compute d and |V|.
 5. Difference in scheduled to calculated power

 DPi
k[ ]  = P Pi i

k
,

[ ]
sch -  

 DQi
k[ ]  = Q Qi i

k
,

[ ]
sch -  

 6. Find the new estimates for the voltage magnitude and angle

 di
k[ ]+1  = d di

k
i
k[ ] [ ]+ D  

 | |Vi
k[ ]+1  = | | + | |V Vi

k
i

k[ ] [ ]D
 7. Repeat the process until the mismatch (residuals) is less than the 

specified accuracy
  | |D £Pi

k[ ] e
  | |D £Qi

k[ ] e
 8. After solving for bus voltages and angles, power flows and losses on 

the network branches are calculated
 • Transmission lines and transformers are network branches.
 • The direction of positive current flow is defined for a branch 

element (demonstrated on a medium length line).
 • Power flow is defined for each end of the branch.
 • Example: The power leaving bus i and flowing to bus j as shown 

below.
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Current and power flows
  i  j
 Iij = IL + Ii0 = yij(Vi – Vj) + yi0Vi

 Sij = V I V y y V y Vi ij i ij i i ij i
* * * *( )= + -2

0

  j  i
 Iji = –IL + Ij0 = yij(Vj – Vi) + yj0Vj

 Sji = V I V y y V y Vj ij j ij j j ij i
* * * *( )= + -2

0

Power loss
  Slossij = Sij + Sji

This completes the load flow study. Finally, in Figure 2.13 all the computational 
steps are summarized in the detailed flow chart.

2.6.3 Advantages and Disadvantages of  
Newton–Raphson Method

Advantages
Faster, more reliable and yields accurate results, requires less number of 
iterations.
Disadvantages
Program as well as memory is more complex.

EXAMPLE 2.6 Figure 2.14 shows the one line diagram of a simple three-
bus system with generation at bus 1. The magnitude of voltage at bus 1 is 
adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are given in the 
diagram. Line impedances are marked in p.u. on a 100 MVA base and the line 
charging susceptances are neglected.
 (a) Using the Newton–Raphson method, determine the phasor values of 

the voltages at the load buses 2 and 3(PQ buses) accurate to decimal 
places.

 (b) Verify the result with Power World Simulator.

Figure 2.14 One line diagram of a simple three-bus system Example 2.6.
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Figure 2.13 Flow chart for Newton–Raphson method.
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Solution: 

(a) Form the Ybus

 y12 = 
1 1

0 02 0 04
10 20

12z j
j=

+
= -

. .

 y13 = 
1 1

0 01 0 03
10 30

13z j
j=

+
= -

. .

 y23 = 
1 1

0 0125 0 025
16 32

23z j
j=

+
= -

. .

 Y11 = y12 + y13 = (10 – j20) + (10 – j30) = 20 – j50
 Y12 = Y21 = –y12 = –(10 – j20) = –10 + j20
 Y13 = Y31 = –y13 = –(10 – j30) = –10 + j30
 Y22 = y21 + y23 = (10 – j20) + (16 – j32) = 26 – j52
 Y23 = Y32 = –y23 = –(16 – j32) = –16 + j32
 Y33 = y31 + y32 = (10 – j30) + (16 – j32) = 26 – j62

 Ybus = 
20 50 10 20 10 30

10 20 26 52 16 32

10 30 16 32 26

- - + - +
- + - - +
- + - + -

j j j

j j j

j j j662

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Ybus = 
53 85165 1 9029 22 36068 2 0344 31 62278 1 8925

22 36068 2 0

. . . . . .

. .

– – –
–
-

3344 58 13777 1 1071 35 77709 2 0344

31 62278 1 8925 35 77709

. . . .

. . .

– –
–

-
–– –2 0344 67 23095 1 1737. . .-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Ybus = 
53 85165 68 2 22 36068 116 6 31 62278 108 4

22 36068 116 6 58

. . . . . .

. .

– – –
–

-
.. . . .

. . . . .

13777 63 4 35 77709 116 6

31 62278 108 4 35 77709 116 6 67

– –
– –

-
223095 67 2– -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙.

Initialize magnitude and angle of bus voltage
 |V1| = 1.05, d1 = 0.0 rad
 |V2|(0) = 1, d2

0( )  = 0.0 rad 
 |V3|(0) = 1.04, d3

0( )  = 0.0 rad
In the matrix form

  
d d1

0

1
0

2
0

2
0

0

1 05

0

1

( )

( )

( )

( ).
;

V V

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ ;;

.

( )

( )

d3
0

3
0

0

1 04V

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

Scheduled powers are

At bus 2, P2,sch = P PG D2 2 0
400

100
4- = - = - p.u.

 Q2,sch = Q QG D2 2 0
250

100
2 5- = - = - . p.u.

At bus 3, P3,sch = P PG D3 3
200

100
0 2- = - = p.u.
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The real power at buses 2 and 3 and reactive power at bus 2 are

 P2 = |V2| |V1| |Y21| cos (q21 – d2 + d1) + | |V2
2 |Y22| cos q22

   + |V2| |V3| |Y23| cos (q23 – d2 + d3)
 P2 = (1) (1.05) (22.36068) cos (116.6 – 0 + 0) + (1)2 (58.13777) cos (–63.4)
   + (1) (1.04) (35.77709) cos (116.6 – 0 + 0) = –1.1414
 P3 = |V3| |V1| |Y31| cos (q31 – d3 + d1) + |V3| |V2| |Y32| cos (q32 – d3 + d2) 

   + | |V3
2 |Y33| cos q33

 P3 = (1.04) (1.05) (31.62278) cos (108.4 – 0 + 0)
   + (1.04) (1) (35.77709) cos (116.6 – 0 + 0) + (1.04)2 (67.23095) cos (–67.2)
  = 0.5616

 Q2 = – |V2| |V1| |Y21| sin (q21 – d2 + d1) – | |V2
2 |Y22| sin q22 

   – |V2| |V3| |Y23| sin (q23 – d2 + d3)
 Q2 = –(1) (1.05) (22.36068) sin (116.6 – 0 + 0) – (1)2 (58.13777) sin (–63.4)
   – (1) (1.04) (35.77709) sin (116.6 – 0 + 0) = –2.28

Difference in scheduled to calculated power

 DP2
0[ ]  = P P2 2

0 4 1 1414 2 8586, ,
( ) ( . ) .sch calc- = - - - = -  

 DP3
0[ ]  = P P3 3

0 2 0 5616 1 43846, ,
( ) ( . ) .sch calc- = - =

 DQ2
0[ ]  = Q Q2 2

0 2 5 2 28 0 22, ,
( ) . ( . ) .sch calc- = - - - = -

The Jacobian matrix is given by

  

D
D
D

P

P

Q

P P P

V

P P P

V

2

3

2

2

2

2

3

2

2

3

2

3

3

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

d d

d d

| |

| 22

2

2

2

3

2

2

2

3

2
|

| |

| |
∂
∂

∂
∂

∂
∂

Q Q Q

V

V

d d

d
d

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í

D
D
DÍÍ

˘

˚

˙
˙
˙

 
∂
∂

P2

2d
 = |V2| |V1| |Y21| sin (q21 – d2 + d1) + |V2| |V3| |Y23| sin (q23 – d2 + d3)

  = (1) (1.05) (22.36068) sin (116.6 – 0 + 0) 
   + (1) (1.04) (35.77709) sin (116.6 – 0 + 0) = 54.2634

 
∂
∂

P2

3d
 = – |V1| |V3| |Y23| sin (q23 – d2 + d3)

  = –(1) (1.04) (35.77709) sin (116.6 – 0 + 0) = –33.2698

 
∂
∂

P

V
2

2| |
 = |V1| |Y21| cos (q21 – d2 + d1) + 2 |V2| |Y22| cos q22

   + |V3| |Y23| cos (q23 – d2 + d3)
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  = (1.05) (22.36068) cos (116.6 – 0 + 0) + 2(1) (58.13777) cos (–63.4)
   + (1.04) (35.77709) cos (116.6 – 0 + 0) = 24.890

 
∂
∂

P3

2d
 = – |V3| |V2| |Y32| sin (q32 – d3 + d2)

  = –(1.04) (1) (35.77709) sin (116.6 – 0 + 0) = –33.2698

 
∂
∂

P3

3d
 = |V3| |V1| |Y31| sin (q31 – d3 + d1) + |V3| |V2| |Y32| sin (q32 – d3 + d2)

  = (1.04) (1.05) (31.62278) sin (108.4 – 0 + 0) 
   + (1.04) (1) (35.77709) sin (116.6 – 0 + 0) = 66.0365

 
∂
∂

P

V
3

2| |
 = |V3| |Y32| cos (q32 – d3 + d2)

  = (1.04) (35.77709) cos (116.6 – 0 + 0) = –16.663

 
∂
∂
Q2

2d
 = |V2| |V1| |Y21| cos (q21 – d2 + d1) + |V2| |V3| |Y23| cos (q23 – d2 + d3)

  = (1) (1.05) (22.36068) cos (116.6 – 0 + 0) 
   + (1) (1.04) (35.77709) cos (116.6 – 0 + 0) = –27.1731

 
∂
∂
Q2

3d
 = – |V2| |V3| |Y23| cos (q23 – d2 + d3)

  = –(1) (1.04) (35.77709) cos (116.6 – 0 + 0) = 16.663

 
∂
∂

Q

V
2

2| |
 = – |V1| |Y21| sin (q21 – d2 + d1) – 2 |V2| |Y22| sin (q22) 

   – |V3| |Y23| sin (q23 – d2 + d3)
  = –(1.05) (22.36068) sin (116.6 – 0 + 0) – 2(1) (58.13777) sin (–63.4)
   – (1.04) (35.77709) sin (116.6 – 0 + 0) = 49.707

 
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 8586

1 43846

0 22

.

.

.

 = 
54 2634 33 2698 24 890

33 2698 66 0365 16 663

27 1731 16 663 4

. . .

. . .

. .

-
- -
- 99 707

2
0

3
0

2
0.

( )

( )

( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

D

D

D

d

d

| |V

 

D

D

D

d

d
2
0

3
0

2
0

( )

( )

( )| |V

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 
54 2634 33 2698 24 890

33 2698 66 0365 16 663

27 1731 16 663 4

. . .

. . .

. .

-
- -
- 99 707

2 8586

1 43846

0 22

1

.

.

.

.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

 
D

D

D

d

d
2
0

3
0

2
0

( )

( )

( )| |V

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 
0 0231 0 0134 0 0071

0 0137 0 0219 0 0005

0 0081 0 0000 0 0161

. . .

. . .

. . .

-È

Î

Í
ÍÍ
Í

˘

˚

˙
˙
˙

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 8586

1 43846

0 22

.

.

.

 

D

D

D

d

d
2
0

3
0

2
0

( )

( )

( )| |V

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 
-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 0452

0 0077

0 0266

.

.

.
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  New bus voltages and angles in the first iteration are 

 di
k[ ]+1  = d di

k
i
k[ ] [ ]+ D  

 d2
1[ ]  = d d2

0
2
0 0 0 0452 0 0452[ ] [ ] ( . ) .+ = + - = -D

 d3
1[ ]  = d d3

0
3
0 0 0 0077 0 0077[ ] [ ] ( . ) .+ = + - = -D

 | |Vi
k[ ]+1  = | | + | |V Vi

k
i

k[ ] [ ]D

 | |V2
1[ ]  = | | | |V V2

0
2

0 1 0 0266 0 9734[ ] [ ] ( . ) .+ = + - =D

(b) Verify the result using Power World Simulator (PWS): The one line 
diagram of a simple bus system is drawn in PWS, which is shown in Figure 2.15.

Figure 2.15 One line diagram of a simple three-bus system.

The first step is the formation of [Ybus] using the inspection method. The 
calculated [Ybus] values are given in Figure 2.16. Since the given problem is 
a three-bus system, the size of [Ybus] is 3  3 matrix.

Figure 2.16 Ybus result.

Newton–Raphson method

This method is executed by pressing the icon Newton–Raphson power flow 
available in tools ribbon. Before executing this method, the number of iterations 
is to be fixed as 1 in simulator options ribbon. The Jacobian values and power 
flow results are given in Figure 2.17 and Figure 2.18 for the 1st iteration.
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Figure 2.17 Jacobian values.

Figure 2.18 Power flow results and voltages—1st iteration.

The details of convergence are shown in Figure 2.19. The mismatches of 
real powers and reactive power for each iteration are also clearly indicated. 
This method takes 2 iterations to converge power flows. The converged values 
of Jacobian and Power flow results are given in Figure 2.20 and Figure 2.21.

Figure 2.19 Details of convergence.

Figure 2.20 Jacobian values.



Load Flow Analysis 111

Figure 2.21 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in 
Figure 2.22.

Figure 2.22 One line diagram of a simple three-bus system.

Once the data are entered in the software it can be executed by the above 
three power flow methods. Figure 2.23 shows the converged results obtained 
by the Gauss–Seidel method. This window is generated from bus based report.

The Newton–Raphson method is executed and the power flow results are 
shown in Figure 2.23.

2.7 Fast Decoupled Load Flow Method

The Fast Decoupled Load Flow (FDLF) method is one of the improved methods, 
which was based on the simplification of the Newton–Raphson method and 
reported by Stott and Alsac in 1974. This method due to its simplifications 
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of calculations, fast convergence and reliable results became the most widely 
used method in load flow analysis.

 However, FDLF for some cases, where high R/X ratios or heavy loading 
(low voltage) at some buses are present, does not converge well. For these 
cases, many efforts and developments have been made to overcome these 
convergence obstacles. Some of them targeted the convergence of systems 
with high R/X ratios, others those with low voltage buses. However, one of the 
most recent developments is a Robust Fast Decoupled Load Flow developed 
by Wang and Li; it is based on heuristic justification and general voltage 
normalization methods and solves both high R/X ratios and low bus voltage 
problem simultaneously.

This method exploits the property of the power system wherein real power 
flow-voltage angle (P = (V1V2/X 1) sin d ) and reactive power flow-voltage 
magnitude are loosely (Q = (V1V2/X ) cos d – (V X2

2/ )) coupled.
As the FDLF is derived from the Newton–Raphson method, we will 

start from the matrix representation of Newton–Raphson and apply some 
simplifications and approximations to reach the equations of the FDLF.

The matrix representation of the Newton–Raphson method is:

  
D
D

D
D

P

Q

J J

J J V

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

1 2

3 4

d
| |

 (2.57)

Elements of Jacobian matrix J1

 (i) the diagonal elements are 

   
∂
∂

P
V V Yi

i
i j ij ij i j

j i
d

q d d= - +Â| || || | sin ( )
π

 (2.58)

 (ii) the off-diagonal elements are

  
∂
∂

P
V V Yi

j
i j ij ij i jd

q d d= - - +| || || | sin ( )   j  i (2.59)

Elements of Jacobian matrix J2

 (i) the diagonal elements are 

  
∂
∂

P

V
V Y V Yi

i
i ii ii j ij ij i j

j i
| |

| || | | || |= + - +Â2 cos cos ( )q q d d
π

 (2.60) 

 (ii) the off-diagonal elements are

  
∂

∂
P

V
V Yi

j
i ij ij i j| |

| || |= - +cos ( )q d d   j  i (2.61) 

Elements of Jacobian matrix J3

 (i) the diagonal elements are 

  
∂
∂
Q

V V Yi

i
i j ij ij i j

j i
d

q d d= - +Â| || || | cos ( )
π

 (2.62) 
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 (ii) the off-diagonal elements are

  
∂
∂

Q
V V Yi

j
i j ij ij i jd

q d d= - - +| || || | cos ( )   j  i (2.63)

Elements of Jacobian matrix J4

 (i) the diagonal elements are 

  
∂
∂

Q

V
V Y V Yi

i
i ii ii j ij ij i j

j i
| |

| || | | || |= - - - +Â2 sin sin ( )q q d d
π

 (2.64) 

 (ii) the off-diagonal elements are

  
∂
∂

Q

V
V Yi

j
i ij ij i j| |

| || |= - - +sin ( )q d d   j  i (2.65)

Now, for typical power system branches:
  X/R  1 and qij < 20° (2.66)

These two approximations will cause a weak coupling between P and 
V, and between Q and d, hence J2 and J3 entries of the initial matrix of 
equation (2.57) can be ignored leading to the following decoupled equations:

 
D
D

P

Q

È

Î
Í

˘

˚
˙  = 

J

J V
1

4

0

0

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

D
D

d
| |

 (2.67)

 [P] = [ ] [ ] [ ]J
P

1 D Dd
d

d= È
ÎÍ

˘
˚̇

∂
∂

 (2.68)

 [Q] = [ ] [ ] [ ]J V
Q

V
V4 D D| |

| |
| |= È

ÎÍ
˘
˚̇

∂
∂  (2.69)

Equations (2.68) and (2.69) show that the matrix equations are separated 
into two decoupled equations requiring considerably less time to solve compared 
to the time required for the solution of Eq. (2.57).

Furthermore, considerable simplifications can be made to eliminate the 
need for recalculating J1 and J4 during iteration.

The elements of Jacobian matrix J1 are as follows.
The diagonal elements are

 
∂
∂

Pi

jd  = | || || | | |V V Y V Yi j ij ij i j
j

n

i ii iisin ( ) | | sin ( )q d d q- + -
=

Â
1

2

 
∂
∂

Pi

jd  = –Qi – |Vi|2 |Yii| sin (qii)

 
∂
∂

Pi

jd  = –Qi – |Vi|2 Bii
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Now, the diagonal elements of J1 can be written as

  
∂
∂

P
Q V Bi

i
i i iid

= - - | |2  (2.70)

where Bii = |Yii| sin qii is the imaginary part of the diagonal elements of the 
bus admittance matrix Ybus.

Further simplifications can be applied to Eq. (2.70), by considering
  Bii  Qi and |Vi|2  |Vi|

   
∂
∂

P
V Bi

i
i iid

= -| |  (2.71)

Also, as under normal operating conditions dj – di is quite small, therefore 
qij – di + dj  qij and |Vj|  1.

The off-diagonal elements of J1 can be written as

 
∂
∂

Pi

jd
 = – |Vi| |Vj| |Yij| sin (qij – di + dj)  |Vj|  1

  = – |Vi| |Yij| sin (qij)

 
∂
∂

Pi

jd  = – |Vi| Bij (2.72)

Similarly, the diagonal elements of J4 may be written as 

 
∂
∂

Q

V
i

i| |
 = - - - +

=
Â| || | | || |V Y V Yi ii ii j ij ij i j
j

n

sin sin ( )q q d d
1

Multiplying the above equation by |Vi|, we get

| |
| |

| | | | | || || |V
Q

V
V Y V V Yi

i

i
i ii ii i j ij ij i j¥ = - - - +

∂
∂

2 sin sin (q q d d ))
j

n

i ii iV B Q
=

Â = - +
1

2| |

Again, since Bii  Qi, Qi may be neglected

  
∂
∂

Q

V
V Bi

i
i ii| |

| |= -  (2.73)

The off-diagonal elements of J4 are

  

∂
∂

Q

V
V Yi

j
i ij ij i j| |

| || |= - - +sin ( )q d d

Again assume qij – di + dj  qij

 
∂
∂

Q

V
i

j| |
 = – |Vi| |Yij| sin qij

 
∂
∂

Q

V
i

j| |
 = – |Vi| Bij (2.74)

PHI
Comment on Text
AQ: Please see the change.
It is correct. 
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Applying these assumptions to Eqs. (2.68) and (2.69), we get

 
∂
∂

Pi

id
 = – |Vi| Bii  or 

D
D

Pi

id
 = – |Vi| Bii

 
DP

V
i

i| |
 = –Biidi

   
DP

Vi| |
 = –Bdi (2.75)

Similarly,

   
∂
∂

Q

V
i

i| |
 = – |Vi| Bii  or 

D
D

Q

V
i

i| |
 = – |Vi| Bii 

   
D
D

Q

V
i

i| |
 = –Bii|Vi|

   
DQ

Vi| |
 = –B|Vi| (2.76)

where, B and B are the imaginary part of the bus admittance matrix Ybus, 
such that B contains all buses admittance except those related to the slack bus, 
and B is B deprived  from all voltage controlled buses related admittances.

Finally, all these approximations and simplifications lead to the following 
successive voltage magnitude and voltage angle updating equations.

 D Dd = - ¢ -[ ]B
P

V
1

| |
  (2.77)

 D D
V B

Q

V
= - ¢¢ -[ ] 1

| |
 (2.78)

FDLF technique is very useful in contingency analysis where numerous 
outages are to be simulated or a load flow solution is required for online control.

The algorithm written according to the equations derived in the previous 
section is as follows:
 Step 1: Create the bus admittance matrix [Ybus].
 Step 2: Detect all kinds and numbers of buses and setting all bus volt-

ages to an initial value of 1 p.u., all voltage angles to 0, and the 
iteration counter iter to 0.

 Step 3: Create the matrices B and B according to Eqs. (2.75) and (2.76). 
 Step 4: If max (P, Q)  accuracy

   DPi
k[ ]  = P Pi i

k
,

[ ]
sch -

   Qi  = Q Qi i
k

,
[ ]

sch -

  then go to Step 6
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  else
 (i) Calculate J1 and J4 elements of Eqs. (2.71), (2.72), (2.73) 

and (2.74). 

  
∂
∂

∂
∂

P
V B

P
V Bi

i
i ii

i

j
i ijd d

= - = -| | | |

  
∂
∂

∂
∂

Q

V
V B

Q

V
V Bi

i
i ii

i

j
i ij| |

| |
| |

| |= - = -

 (ii) Calculate the real and reactive powers at each bus, and check 
if MVAR of generator buses are within the limits, otherwise 
update the voltage magnitude at these buses by  2 %.

  If Qi,min < Qi < Qi,max, calculate Pi
k( )

  If Qi
k[ ]  > Qi,max,  Qi,sch = Qi,max

  If Qi
k[ ]  < Qi,min,  Qi,sch = Qi,min

  The PV bus will act as PQ bus.
   (iii) Calculate the power residuals, P and Q.
 DPi

k[ ]  = P Pi i
k

,
[ ]

sch -

 DQi
k[ ]  = Q Qi i

k
,

[ ]
sch -

  (iv) Calculate the bus voltage and voltage angle updates V and d.

 [ ]( )Ddi
k  = - ¢ -[ ]

[ ]

B
P

V
i

k

i

1 D
| |

 [ ]( )DVi
k  = - ¢¢ -[ ]

[ ]

B
Q

V
i
k

i

1 D
| |

  (v) Update the voltage magnitude V and the voltage angle d at  
  each bus. 

 di
k[ ]+1  = d di

k
i
k[ ] [ ]+ D

 | |Vi
k[ ]+1  = | | | |V Vi

k
i

k[ ] [ ]+ D
  (vi) Increment of the iteration counter iter = iter + 1
 Step 5: If iter  maximum number of iteration

   | |DPi
k[ ]   e

   | |DQi
k[ ]   e

  then go to Step 4
  else print out ‘Solution did not converge’ and go to Step 6.
 Step 6: Print out of the power flow solution, computation and display of  
  the line flow and losses.

This completes the load flow study. Finally, in Figure 2.24 all the 
computational steps are summarized in the detailed flow chart.
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Figure 2.24 Flow chart for FDLF method.
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EXAMPLE 2.7 Figure 2.25 shows the one line diagram of a simple three- 
bus system with generation at bus 1. The magnitude of voltage at bus 1 is 
adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are given in the 
diagram. Line impedances are marked as n p.u. on a 100 MVA base and the 
line charging susceptances are neglected.
 (a) Using the fast decoupled load flow method, determine the phasor 

values of the voltages at the load buses 2 and 3(PQ bus) accurate to 
decimal places.

 (b) Verify the result with Power World Simulator and PSS/E.

Figure 2.25 One line diagram of a simple three-bus system.

Solution: (a) Form the Ybus

 y12 = 
1 1

0 02 0 04
10 20

12z j
j=

+
= -

. .

 y13 = 
1 1

0 01 0 03
10 30

13z j
j=

+
= -

. .

 y23 = 
1 1

0 0125 0 025
16 32

23z j
j=

+
= -

. .
 Y11 = y12 + y13 = (10 – j20) + (10 – j30) = 20 – j50
 Y12 = Y21 = –y12 = –(10 – j20) = –10 + j20
 Y13 = Y31 = –y13 = –(10 – j30) = –10 + j30
 Y22 = y21 + y23 = (10 – j20) + (16 – j32) = 26 – j52
 Y23 = Y32 = –y23 = –(16 – j32) = –16 + j32
 Y33 = y31 + y32 = (10 – j30) + (16 – j32) = 26 – j62

  Y

j j j

j j j

j j
bus =

- - + - +
- + - - +
- + - +

20 50 10 20 10 30

10 20 26 52 16 32

10 30 16 322 26 62-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙j

Bus 1 is slack bus and the corresponding bus susceptance matrix for evaluation 
of phase angle d2 and d3 is
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  ¢ =
-

-
È

Î
Í

˘

˚
˙B

52 32

32 62

The inverse of the above matrix is 

  [ ]
. .

. .
¢ =

- -
- -

È

Î
Í

˘

˚
˙

-B 1 0 028182 0 014545

0 014545 0 023636

Initialize magnitude and angle of bus voltage
 |V1| = 1.05, d1 = 0.0 rad

 |V2|(0) = 1, d2
0( )  = 0.0 rad 

 |V3|(0) = 1.04, d3
0( )  = 0.0 rad

In the matrix form

  
d d1

0

1
0

2
0

2
0

0

1 05

0

1

( )

( )

( )

( ).
;

V V

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ ;;

.

( )

( )

d3
0

3
0

0

1 04V

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

Scheduled powers are

at bus 2, P2,sch = P PG D2 2 0
400

100
4- = - = - p.u.

 Q2,sch = Q QG D2 2 0
250

100
2 5- = - = - . p.u.

at bus 3, P3,sch = P PG D3 3
200

100
0 2- = - = p.u.

The real power at buses 2 and 3 and reactive power at bus 2 are

 P2 = |V2| |V1| |Y21| cos (q21 – d2 + d1) + | |V2
2 |Y22| cos q22 

   + |V2| |V3| |Y23| cos (q23 – d2 + d3)
 P2 = (1) (1.05) (22.36068) cos (116.6 – 0 + 0) + (1)2 (58.13777) cos (–63.4)
   + (1) (1.04) (35.77709) cos (116.6 – 0 + 0) = –1.1414
 P3 = |V3| |V1| |Y31| cos (q31 – d3 + d1) + |V3| |V2| |Y32| cos (q32 – d3 + d2) 
   + | |V3

2 |Y33| cos q33

 P3 = (1.04) (1.05) (31.62278) cos (108.4 – 0 + 0)
   + (1.04) (1) (35.77709) cos (116.6 – 0 + 0) + (1.04)2 (67.23095) cos (–67.2)
  = 0.5616

 Q2 = – |V2| |V1| |Y21| sin (q21 – d2 + d1) – | |V2
2 |Y22| sin q22 

   – |V2| |V3| |Y23| sin (q23 – d2 + d3)
 Q2 = –(1) (1.05) (22.36068) sin (116.6 – 0 + 0) – (1)2 (58.13777) sin (–63.4)
   – (1) (1.04) (35.77709) sin (116.6 – 0 + 0) = –2.28
Difference in scheduled to calculated power

 DP2
0[ ]  = P P2 2

0 4 1 1414 2 8586, ,
( ) ( . ) .sch calc- = - - - = -  
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 DP3
0[ ]  = P P3 3

0 2 0 5616 1 43846, ,
( ) ( . ) .sch calc- = - =

 DQ2
0[ ]  = Q Q2 2

0 2 5 2 28 0 22, ,
( ) . ( . ) .sch calc- = - - - = -

The FDLF algorithm given by Eq. (2.77) becomes

  [ ]( )Ddi
k  = - ¢ -[ ]

[ ]

B
P

V
i

k

i

1 D
| |

  
d

d
2
0

3
0

( )

( )

È

Î
Í
Í

˘

˚
˙
˙

 = - ¢

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

-[ ]

[ ]

[ ]
B

P

V

P

V

1

2
0

2

3
0

3

D

D

| |

| |

  
d

d
2
0

3
0

( )

( )

È

Î
Í
Í

˘

˚
˙
˙

 = -
- -
- -

È

Î
Í

˘

˚
˙

-
0 028182 0 014545

0 014545 0 023636

2 8586

1 0
1 438

. .

. .

.

.
. 446

1 04.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  

=
- -
- -

È

Î
Í

˘

˚
˙

-È

Î

0 028182 0 014545

0 014545 0 023636

2 8586

1 3831

. .

. .

.

.ÍÍ
˘

˚
˙

=
-
-

È

Î
Í

˘

˚
˙

0 060483

0 008909

.

.

Since bus 3 is a regulated bus, the corresponding row and column of B are 
eliminated and we get

 B = [–52]

 [B]–1 = 
- = -1
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The new bus voltages and the angles in the first iteration are
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  | |V2
1[ ]  = | | | |V V2

0
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0 1 0 0042308 0 99577[ ] [ ] ( . ) .+ = + - =D

(b) Verify the result using Power World Simulator: The one line diagram 
of a simple bus system drawn in PWS is shown in Figure 2.26.

Figure 2.26 One line diagram of a simple three-bus system.

The first step is the formation of [Ybus] using the inspection method. The 
calculated [Ybus] values are given in Figure 2.27. Since the given problem is 
a three-bus system, the size of [Ybus] is 3  3 matrix.

Figure 2.27 Ybus result.

This method is executed by pressing the icon fast decoupled available in 
tools ribbon. Before executing this method, the number of iterations is to be 
fixed as 1 in simulator options ribbon.

The same problem has been executed by the fast decoupled method. 
The converged results are given in Figure 2.28. The converged power flow 
results for Gauss–Seidel, Newton–Raphson and fast decoupled are shown 
in Figures 2.8, 2.21 and 2.28. The power flow results are the same for all 
methods, but the results are converged quickly by Newton–Raphson method, 
i.e. by two iterations.
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Figure 2.28 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in 
Figure 2.29.

Figure 2.29 One line diagram of a simple three-bus system.

Once the data are entered in the software it can be executed by the above 
three power flow methods. Figure 2.30 shows the converged results obtained by 
the fast decoupled method. This window is generated from bus based report. 

The fast decoupled method is executed and the power flow results are 
shown in Figure 2.30.
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2.8 Comparison of the Gauss–Seidel, 
Newton–Raphson and Fast Decoupled 
Methods of Load Flow Study

S.No. Gauss–Seidel Newton–Raphson Fast decoupled
1. Requires a large 

number of iterations 
to reach convergence.

Requires a less 
number of iterations 
to reach convergence.

Requires a more number 
of iterations than Newton–
Raphson method.

2. Computation time per 
iteration is less.

Computation time per 
iteration is more.

Computation time per 
iteration is less.

3. It has linear 
convergence 
characteristics.

It has quadratic 
convergence 
characteristics.

—

4. The number of 
iterations required for 
convergence increases 
with the size of the 
system.

The number of 
iterations are 
independent of the 
size of the system.

The number of iterations 
does not depend on the 
size of the system.

5. Less memory required. More memory 
required.

Less memory required than 
Newton–Raphson method.

Review Questions

Part-A

 1. What is the power flow study or load flow study?
 2. What are the scraps of information that are obtained from the load 

flow study?
 3. What is the need for load flow study?
 4. What are the quantities associated with each bus in a system?
 5. What are the different types of buses in a power system? Or, how are 

the buses classified and what are its types? 
 6. What is the need for slack bus?
 7. Why do we go for iterative methods to solve the load flow problems?
 8. What are the methods mainly used for the solution of load flow study?
 9. What do you mean by a flat voltage start?
 10. Discuss the effect of acceleration factor in load flow study.
 11. When is the generator bus treated as load bus?
 12. What are the advantages and disadvantages of Gauss–Seidel method?
 13. What are the advantages and disadvantages of Newton–Raphson method?
 14. Compare the Gauss–Seidel and the Newton–Raphson methods of load 

flow study.
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Part-B

 1. The system data for a load flow solution are given in the following 
tables. Determine the voltages at the end of first iteration by Gauss–Seidel 
method. Take a = 1.6. Verify the result with Power World Simulator.

Bus code R in p.u. X in p.u.
1–2 0.05 0.15
1–3 0.10 0.30
1–4 0.20 0.40
2–4 0.10 0.30
3–4 0.05 0.15

Bus code P Q V Remarks
1 — — 1.05 Slack bus
2 0.5 –0.2 — PQ bus
3 –1.0 0.5 — PQ bus
4 0.3 –0.1 — PQ bus

 2. The system contains six buses. The bus data, branch data and generator 
data are given below. The system data are prepared and the power 
flows are solved by Newton–Raphson method using Power World 
Simulator.

Bus data
Bus Type V 

p.u.
d 

degree
Pg 

MW
Qg 

p.u.
PL 

p.u.
QL 
p.u.

Nominal 
voltage 
in kV

1 Swing 1.05 0 — — — — 230
2 Generator 1.05 — 66.368 0 0.0 0.0 230
3 Generator 1.07 — 77.473 — 0.0 0.0 230
4 Load 1.00 — 0 0 70 70 230
5 Load 1.00 — 0 0 70 70 230
6 Load 1.00 — 0 0 70 70 230

Line data
From Bus To bus R p.u. X p.u. B p.u. Max. MVA p.u.

1 2 0.20 0.20 0.02 40
1 4 0.05 0.20 0.02 60
1 5 0.08 0.30 0.03 40
2 3 0.05 0.25 0.03 40
2 4 0.05 0.10 0.01 60
2 5 0.10 0.30 0.02 30
2 6 0.07 0.20 0.025 90
3 5 0.12 0.26 0.025 70
3 6 0.02 0.10 0.01 80
4 5 0.20 0.40 0.04 20
5 6 0.10 0.30 0.03 40
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 3. A one line diagram of the system is shown in the figure below. The 
system contains seven buses. The bus data, branch data and generator 
data are given below. The system data are prepared and the power 
flows are solved by Newton–Raphson method or fast decoupled method 
using Power World Simulator software.

  Generator ratings
  G1: 100 MVA, 13.8 kV, X = 0.12, X2 = 0.14, X0 = 0.05 p.u.
  G2: 100 MVA, 13.8 kV, X = 0.12, X2 = 0.14, X0 = 0.05 p.u.
  Generator neutrals are solidly grounded.
  Transformer ratings
  T1: 100 MVA, 13.8 kV/230 kV Y, X = 0.1 p.u. 
  T2: 200 MVA, 15 kV/230 kV Y, X = 0.1 p.u.
  Generator neutrals are solidly grounded
  Transmission line ratings
  All lines: 230 kV, Z1 = 0.08 + j0.5 /km, Z0 = 0.2 + j1.5 /km, 

y1 = j3.3  10–6 s/km
  L1 = 15 km, L2 = 25 km, L3 = 40 km, L4 = 15 km, L5 = 50 km
	 	 Power	flow	data
  Bus 1: Swing bus, V1 = 13.8 kV
  Buses 2, 3, 4, 5, and 6: Load buses
  Bus 7: Voltage control bus, V7 = 15 kV, PG7 = 180 MW, –87 MVAR 

< QG7 < +87 MVAR
  System base quantities
  Sbase = 100 MVA, three phase, Vbase = 13.8 kV in the zone of G1




