<u>снартек</u>2

Load Flow Analysis

2.1 Introduction

The load flow analysis is a very important and fundamental tool in power system analysis. Its results play the major role during the operational stages of any system for its control and economic schedule, as well as during the expansion and design stages. The purpose of any load flow analysis is to compute precise steady-state voltages and voltage angles of all buses in the network, the real and reactive power flows into every line and transformer, under the assumption of known generation and load. The load flow solution also gives the initial conditions of the system when the transient behaviour of the system is to be studied. In practice it will be required to carry out numerous power flow solutions under a variety of conditions.

2.2 Bus Classification

- (i) Load bus: A bus where there is only load connected and no generation exists (both P_{Gi} and Q_{Gi} are zero) is called a load bus. At this bus real power (P_{Di}) and reactive power (Q_{Di}) are drawn from the supply. A load bus is also called a PQ bus, since the real power and reactive power are known values at this bus. The other two unknown quantities at a load bus are voltage magnitude $(|V_i|)$ and its phase angle (δ_i) at the bus. In a power balance equation P_{Di} and Q_{Di} are treated as negative quantities since generated powers P_{Gi} and Q_{Gi} are assumed positive.
- (ii) Voltage controlled bus or generator bus: A voltage controlled bus is any bus in the system where the voltage magnitude can be controlled. At each bus to which there is an alternator connected, the MW generation can be controlled by adjusting the prime mover. In other words, the phase angle of the rotor δ is directly related to the real power generated by the machine. The voltage magnitude can be

74 Electrical Power Systems: Analysis, Security and Deregulation

controlled by adjusting generator excitation. Thus at a generator bus the real power generation (P_{Gi}) and the voltage magnitude $(|V_i|)$ can be specified. The phase angle (δ_i) and the reactive power (Q_{Di}) are to be determined. The limits on the value of the reactive power are also specified. These buses are called *PV* buses.

(iii) Slack bus: In a power system network as load flows from the generators to the loads through transmission lines, the power loss occurs due to the losses in the transmission line conductors. These losses when included, we get the power balance relations:

$$P_{L} = \sum_{i=1}^{N} P_{Gi} - \sum_{i=1}^{N} P_{Di}$$
$$Q_{L} = \sum_{i=1}^{N} Q_{Gi} - \sum_{i=1}^{N} Q_{Di}$$

where P_{Gi} and Q_{Gi} are the total real and reactive power generations, P_{Di} and Q_{Di} are the total real and reactive power demands and P_L and Q_L are the power losses in the transmission network. The values of P_{Gi} , Q_{Gi} , P_{Di} and Q_{Di} are either known or estimated. For this reason, the slack bus is also known as the reference bus.

Types of Bus	Specified quantities	Quantities to be determined
Slack or swing or reference bus	$ V , \delta$	<i>P</i> , <i>Q</i>
Generator or voltage controlled or <i>PV</i> bus	P, V	<i>Q</i> , δ
Load bus or PQ bus	<i>P</i> , <i>Q</i>	$ V , \delta$

2.3 Load Flow Equation

The relationship between node current and voltage in the linear network can be described by the following node equation:

$$I = YV \tag{2.1}$$

$$I_i = \sum_{j=1}^n Y_{ij} V_j \qquad i = 1, 2, 3, ..., n$$
(2.2)

or

where I_i and V_j are the injected current at bus *i* and voltage at bus *j*, respectively. The voltage at a typical bus *i* of the system in polar coordinates is given by

$$V_i = |V_i| \angle \delta_i = |V_i| \ (\cos \ \delta_i + j \ \sin \ \delta_i) \tag{2.3}$$

 Y_{ii} an element of the admittance matrix, is given by

$$Y_{ij} = |Y_{ij}| \angle \theta_{ij} = |Y_{ij}| \cos \theta_{ij} + j|Y_{ij}| \sin \theta_{ij} = G_{ij} + jB_{ij}$$
(2.4)

where n is the total number of nodes in the system.

The complex power injected by the source into the *i*th bus of a power system is

$$S_i = P_i + jQ_i = V_i I_i^*$$
 $i = 1, 2, 3, ..., n$ (2.5)

The complex conjugate of the above equation,

$$P_i - jQ_i = V_i^* I_i$$
 $i = 1, 2, 3, ..., n$ (2.6)

We know that

$$I_i = \sum_{j=1}^n Y_{ij} V_j$$

Equation (2.6) becomes

$$P_{i} - jQ_{i} = V_{i}^{*} \sum_{j=1}^{n} Y_{ij}V_{j}$$
(2.7)

Hence basically, real power

$$P_{i} = \operatorname{real}\left[V_{i}^{*}\sum_{j=1}^{n}Y_{ij}V_{j}\right]$$
(2.8)

Reactive power,

$$Q_i = -\operatorname{Im}\left[V_i^* \sum_{j=1}^n Y_{ij} V_j\right]$$
(2.9)

The power flow equations can also be written as follows. Real power,

$$P_i = |V_i| \sum |V_j| |Y_{ij}| \cos \left(\theta_{ij} + \delta_j - \delta_i\right)$$
(2.10)

Reactive power,

$$Q_i = -|V_i| \sum |V_j| |Y_{ij}| \sin\left(\theta_{ij} + \delta_j - \delta_i\right)$$
(2.11)

Equations (2.10) and (2.11) comprise the polar form of the load flow equations or static load flow equations. They are usually expressed in the following forms as mathematical models of the load flow problem:

$$\Delta P_i = P_{i,\text{sch}} - P_{i,\text{calc}} = (P_{Gi} - P_{Di}) - P_{i,\text{calc}}$$
(2.12)

$$\Delta Q_i = Q_{i,\text{sch}} - Q_{i,\text{calc}} = (Q_{Gi} - Q_{Di}) - Q_{i,\text{calc}}$$
(2.13)

where $P_{i,\text{sch}}$, $Q_{i,\text{sch}}$ are the specified active and reactive powers at node *i* based on the above two simultaneous equations. The load flow problem can be roughly summarized as: for specified $P_{i,\text{sch}}$ and $Q_{i,\text{sch}}$, find the voltage vector $|V_i|$ and δ_i such that the magnitudes of the power errors ΔP_i and ΔQ_i are less than the acceptable tolerance.

The functions P_i and Q_i of Eqs. (2.10) and (2.11) are nonlinear functions of the state variables $|V_i|$ and δ_i . This static load flow equations are of such complexity that it is not possible to obtain the exact analytical solution. Hence, the power flow calculations usually employ iterative techniques.

2.4 Load Flow Methods

The iterative techniques are:

- 1. Gauss-Seidel method
- 2. Newton-Raphson method
- 3. Fast decoupled method

2.5 Gauss-Seidel Method

The load flow problem formulated as a set of nonlinear algebraic equations can be solved by an iterative algorithm called the Gauss–Seidel method.

2.5.1 Gauss-Seidel Method When PV Buses are Absent

We have chosen the Gauss–Seidel method first because of its simplicity. Now we shall consider the case when the generator buses or voltage controlled buses or PV buses are absent. This means we have n - 1 load buses or PQ buses, the remaining one being the slack bus.

Computational procedure

- 1. Form the bus admittance matrix of the network by direct inspection method, selecting the ground as reference [formation of Y_{bus}].
- 2. If the slack bus is not specified, select one of the generator buses as the slack bus. The voltage at the slack bus is assumed as $V_i = V + j0.0$ [selection of the slack bus].
- 3. Assume initial values of voltages for all buses except the slack bus. $V_i^{(0)} = 1 + j0.0$ (flat start voltage).
- 4. Set convergence criterion = ε , i.e. if the largest of absolute of the residues exceeds the convergence criterion the process is repeated, otherwise it is terminated.
- 5. Set iteration count k = 0.
- 6. Bus count i = 1. If *i* is the slack bus, then there will be an increment in the bus count.
- 7. Solve the voltage equation for bus i as we know that

$$P_{i} - jQ_{i} = V_{i}^{*} \sum_{j=1}^{n} Y_{ij}V_{j}$$

$$\frac{P_{i} - jQ_{i}}{V_{i}^{*}} = V_{i} \sum_{j=0}^{n} Y_{ij} - \sum_{j=1}^{n} Y_{ij}V_{j} \quad j \neq i$$

$$V_{i} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - jQ_{i}}{V_{i}^{*}} - \sum_{\substack{j=1\\j\neq i}}^{n} Y_{ij}V_{j} \right]$$

or

(

$$V_{i} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - jQ_{i}}{V_{i}^{*}} - \sum_{j=1}^{i-1} Y_{ij}V_{j} - \sum_{j=i+1}^{n} Y_{ij}V_{j} \right]$$
$$V_{i})^{k+1} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - jQ_{i}}{(V_{i}^{k})^{*}} - \sum_{j=1}^{i-1} Y_{ij}(V_{j})^{k+1} - \sum_{j=i+1}^{n} Y_{ij}(V_{j})^{k} \right]$$
(2.14)

8. Calculate the change in bus voltage

$$\Delta V_i^{k+1} = (V_i)^{k+1} - (V_i)^k \tag{2.15}$$

9. Acceleration of convergence: The process of convergence in the Gauss–Seidel method is slow as it requires larger number of iterations to obtain the solution. In this method, convergence can be increased by using the acceleration factor, denoted by α . In power flow studies, α is generally set about 1.6 and cannot exceed 2 if convergence is to occur. Therefore,

$$V_{i,\text{acc}}^{k+1} = (V_i)^k + \alpha \,\Delta V_i^{k+1}$$
(2.16)

Calculate the bus voltages, i.e. V_i^{k+1} for all the buses except the slack bus, where i = 1, 2, 3, ..., n.

- 10. Repeat the iterating process until change in voltage (ΔV_i) for all the buses are within the specified or within the tolerance.
- 11. Finally calculate the power flow and power losses.

Current and power flows

$$I \to J$$

$$I_{ij} = I_L + I_{i0} = y_{ij}(V_i - V_j) + y_{i0}V_i$$

$$S_{ij} = V_i I_{ij}^* = V_i^2 (y_{ij} + y_{i0})^* - V_i y_{ij}^* V_j^*$$

$$j \to i$$

$$I_{ji} = -I_L + I_{j0} = y_{ij}(V_j - V_i) + y_{j0}V_j$$

$$S_{ii} = V_i I_{ii}^* = V_i^2 (y_{ii} + y_{i0})^* - V_i y_{ij}^* V_i^*$$

Power loss

$$S_{\text{lossij}} = S_{ij} + S_{ji}$$

This completes the load flow study. Finally, in Figure 2.1 all the computational steps are summarized in the detailed flow chart.

Figure 2.1 Flow chart for Gauss-Seidel method when PV buses are absent.

EXAMPLE 2.1 The per unit admittances are indicated at the diagram and the bus data are given in Table 2.1. Determine the voltages at buses 2 and 3 after the first iteration using the Gauss–Seidel method. Assume $\alpha = 1.6$.

25

			Table 2.1	Bus da	la		
Bus No.	Bus type	<i>Generation</i> (per unit)		GenerationLoad(per unit)(per unit)		Bus voltage	
		P _G	Q_G	P_D	Q_D	V	δ
1	Slack		_	—		1.02	0
2	PQ	0.25	0.15	0.5	0.25		—
3	PQ	0	0	0.6	0.3		—

Table 2.1 Bus data

Solution: Form the Y_{bus}

$$\begin{split} Y_{11} &= y_{12} + y_{13} = -j3 + (-j4) = -j7 \\ Y_{12} &= Y_{21} = -y_{12} = -(-j3) = j3 \\ Y_{13} &= Y_{31} = -y_{13} = -(-j4) = j4 \\ Y_{22} &= y_{21} + y_{23} = -j3 + (-j5) = -j8 \\ Y_{23} &= Y_{32} = -y_{23} = -(-j5) = j5 \\ Y_{33} &= y_{31} + y_{32} = -j4 + (-j5) = -j9 \\ Y_{bus} &= j \begin{bmatrix} -7 & 3 & 4 \\ 3 & -8 & 5 \\ 4 & 5 & -9 \end{bmatrix} \end{split}$$

At bus 2, P

$$P_2 = P_{G2} - P_{D2} = 0.25 - 0.5 = -0.25$$
 p.u.
 $Q_2 = Q_{G2} - Q_{D2} = 0.15 - 0.25 = -0.1$ p.u
 $P_2 = P_{D2} - P_{D2} = 0 - 0.6 = -0.6$ p.u

 $P_3 = P_{G3} - P_{D3} = 0 - 0.6 = -0.6$ p.u. $Q_3 = Q_{G3} - Q_{D3} = 0 - 0.3 = -0.3$ p.u.

First iteration

At bus 3,

Set k = 0, bus 1 is the slack bus.

$$\therefore \qquad V_1^0 = V_1^1 = V_1^2 = V_1^3 = \dots = 1.02 + j0.0$$

Assume a flat start voltage for PQ buses.

$$V_2^0 = 1 \angle 0; V_3^0 = 1 \angle 0$$

The voltage at bus 2 is

$$(V_2)^1 = \frac{1}{Y_{22}} \left[\frac{P_2 - jQ_2}{(V_2^0)^*} - Y_{21}V_1 - Y_{23}(V_3)^0 \right]$$

= $\frac{1}{-j8} \left[\frac{-0.25 + j0.1}{1 \angle 0} - j3 \times 1.02 \angle 0 - j5 \times 1 \angle 0 \right]$
= $0.995 - j0.03125$
 $\Delta V_2^1 = (V_2)^1 - (V_2)^0 = (0.995 - j0.03125) - (1 + j0.0) = -0.005 - j0.03125)$
 $V_{2,acc}^1 = (V_2)^0 + \alpha \Delta V_2^{-1} = (1 + j0.0) + 1.6 \times (-0.005 - j0.03125)$
= $0.992 - j0.0499$

The voltage at bus 3 is

$$(V_3)^1 = \frac{1}{Y_{33}} \left[\frac{P_3 - jQ_3}{(V_3^0)^*} - Y_{31}V_1 - Y_{32}(V_2)^1 \right]$$

= $\frac{1}{-j9} \left[\frac{-0.6 + j0.3}{1 \angle 0} - j4 \times 1.02 \angle 0 - j5 \times (0.992 - j0.0499) \right]$
= $0.971 - j0.0944$
 $\Delta V_3^1 = (V_3)^1 - (V_3)^0 = (0.971 - j0.0944) - (1 + j0.0) = -0.029 - j0.0944$
 $V_{3,acc}^1 = (V_3)^0 + \alpha \Delta V_3^1 = (1 + j0.0) + 1.6 \times (-0.029 - j0.0944)$
= $0.9536 - j0.1514$

The bus voltages at the end of the first iteration are

$$V_1^{l} = 1.02 + j0$$

$$V_2^{l} = 0.992 - j0.0499$$

$$V_3^{l} = 0.9536 - j0.1514$$

EXAMPLE 2.2 The system data for a load flow solution are given in Tables 2.2 and 2.3. Determine the voltages at the end of the first iteration using the Gauss–Seidel method. Take $\alpha = 1.6$.

 Table 2.2
 Line admittances

Bus code	Admittance
1-2	2 - j8.0
1–3	1 - j4.0
2–3	0.666 - j2.664
2–4	1 - j4.0
3–4	2 - j8.0

Table 2.3 Schedule of active and reactive power

Bus code	<i>P in</i> p.u.	<i>Q in</i> p.u.	V in p.u.	Remarks
1	_	_	1.06	Slack
2	0.5	0.2	1 + j0.0	PQ
3	0.4	0.3	1 + j0.0	PQ
4	0.3	0.1	1 + j0.0	PQ

Solution:

$$Y_{11} = y_{12} + y_{13} = (2 - j8) + (1 - j4) = 3 - j12$$

$$Y_{12} = Y_{21} = -y_{12} = -(2 - j8) = -2 + j8$$

$$Y_{13} = Y_{31} = -y_{13} = -(1 - j4) = -1 + j4$$

$$Y_{22} = y_{21} + y_{23} + y_{24} = (2 - j8) + (0.666 - j2.664) + (1 - j4)$$

$$= 3.666 - j14.664$$

$$\begin{split} Y_{23} &= Y_{32} = -y_{23} = -(0.666 - j2.664) = -0.666 + j2.664 \\ Y_{24} &= Y_{42} = -y_{24} = -(1 - j4) = -1 + j4 \\ Y_{33} &= y_{31} + y_{32} + y_{34} = (1 - j4) + (0.666 - j2.664) + (2 - j8) \\ &= 3.666 - j14.664 \\ Y_{34} &= Y_{43} = -y_{34} = -(2 - j8) = -2 + j8 \\ Y_{44} &= y_{42} + y_{43} = (1 - j4) + (2 - j8) = 3 - j12 \\ Y_{bus} &= \begin{bmatrix} 3 - j12 & -2 + j8 & -1 + j4 & 0 \\ -2 + j8 & 3.666 - j14.664 & -0.666 + j2.664 & -1 + j4 \\ -1 + j4 & -0.666 + j2.664 & 3.666 - j14.664 & -2 + j8 \\ 0 & -1 + j4 & -2 + j8 & 3 - j12 \end{bmatrix} \\ \text{At bus 2,} \qquad P_2 = P_{G2} - P_{D2} = 0 - 0.5 = -0.5 \text{ p.u.} \\ Q_2 = Q_{G2} - Q_{D2} = 0 - 0.2 = -0.2 \text{ p.u.} \\ \text{At bus 3,} \qquad P_3 = P_{G3} - P_{D3} = 0 - 0.4 = -0.4 \text{ p.u.} \\ Q_3 = Q_{G3} - Q_{D3} = 0 - 0.3 = -0.3 \text{ p.u.} \\ Q_4 = Q_{G4} - Q_{D4} = 0 - 0.1 = -0.1 \text{ p.u.} \end{split}$$

First iteration

Set k = 0, bus 1 is slack bus.

$$\therefore \qquad V_1^0 = V_1^1 = V_1^2 = V_1^3 = \dots = 1.06 + j0.0$$

Assume a flat start voltage for PQ buses

$$V_2^0 = 1 \angle 0; V_3^0 = 1 \angle 0; V_4^0 = 1 \angle 0$$

The voltage at bus 2 is

$$\begin{split} (V_2)^1 &= \frac{1}{Y_{22}} \left[\frac{P_2 - jQ_2}{(V_2^0)^*} - Y_{21}V_1^1 - Y_{23}V_3^0 - Y_{24}V_4^0 \right] \\ V_2^{1} &= \frac{1}{3.666 - j14.664} \left[\frac{-0.5 + j0.2}{1 - j0.0} - 1.06(-2 + j8) \right] \\ &\quad -1.0(-0.666 + j2.664) - (-1 + j4)1.0 \right] \\ &= 1.01187 - j0.02888 \\ \Delta V_2^1 &= (V_2)^1 - (V_2)^0 = (1.01187 - j0.02888) - (1 + j0.0) \\ &= 0.01187 - j0.02888 \\ V_{2,\text{acc}}^1 &= (V_2)^0 + \alpha \, \Delta V_2^1 = (1 + j0.0) + 1.6 \times (0.01187 - j0.02888) \\ &= 1.01896 - j0.04621 \end{split}$$

The voltage at bus 3 is

$$\begin{split} (V_3)^1 &= \frac{1}{Y_{33}} \left[\frac{P_3 - jQ_3}{(V_3^0)^*} - Y_{31}V_1^1 - Y_{32}V_2^1 - Y_{34}V_3^0 \right] \\ V_3^1 &= \frac{1}{3.666 - j14.664} \left[\frac{-0.4 + j0.3}{1 - j0} - (-1 + j4) (1.06) \right. \\ &\quad - (-0.666 + j2.664) (1.01187 - j0.02888) - (-2 + j8) (1) \right] \\ &= 0.9926 - j0.026 \\ \Delta V_3^1 &= (V_3)^1 - (V_3)^0 = (0.9926 - j0.026) - (1 + j0.0) \\ &= -7.4 \times 10^{-3} - j0.026 \\ V_{3,acc}^1 &= (V_3)^0 + \alpha \, \Delta V_3^1 = (1 + j0.0) + 1.6 \times (-7.4 \times 10^{-3} - j0.026) \\ &= 0.988 - j0.0416 \end{split}$$

The voltage at bus 4 is

$$(V_4)^1 = \frac{1}{Y_{44}} \left[\frac{P_4 - jQ_4}{(V_4^0)^*} - Y_{41}V_1^1 - Y_{42}V_2^1 - Y_{43}V_3^1 \right]$$

$$V_4^1 = \frac{1}{3 - j12} \left[\frac{-0.3 + j0.1}{1 - j0} - (0) (1.06) - (-1 + j4) (1.01187 - j0.02888) - (-2 + j8) (0.988 - j0.0416) \right]$$

$$= 0.9825 - j0.06$$

$$\Delta V_4^1 = (V_4)^1 - (V_4)^0 = (0.9825 - j0.06) - (1 + j0.0)$$

$$= -0.0175 - j0.06$$

$$V_{4,acc}^1 = (V_4)^0 + \alpha \, \Delta V_4^1 = (1 + j0.0) + 1.6 \times (-0.0175 - j0.06)$$

$$= 0.9721 - j0.096$$

The bus voltages at the end of the first iteration are

$$V_1^1 = 1.06 + j0$$

$$V_2^1 = 1.01896 - j0.04621$$

$$V_3^1 = 0.988 - j0.0416$$

$$V_4^1 = 0.9721 - j0.096$$

EXAMPLE 2.3 Figure 2.2 shows the one line diagram of a simple three bus system with generation at bus 1. The magnitude of voltage at a bus 1 is adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are as marked in the diagram. The line impedances are marked in p.u. on a 100 MVA base and the line charging susceptances are neglected.

- (a) Using the Gauss–Seidel method, determine the phasor values of the voltages at the load buses 2 and 3 (*P*-*Q* buses) accurate to decimal places.
- (b) Verify the result with Power World Simulator and PSS/E.

Solution: (a) To form the Y_{bus}

At

At

$$y_{12} = \frac{1}{z_{12}} = \frac{1}{0.02 + j0.04} = 10 - j20$$

$$y_{13} = \frac{1}{z_{13}} = \frac{1}{0.01 + j0.03} = 10 - j30$$

$$y_{23} = \frac{1}{z_{23}} = \frac{1}{0.0125 + j0.025} = 16 - j32$$

$$Y_{11} = y_{12} + y_{13} = (10 - j20) + (10 - j30) = 20 - j50$$

$$Y_{12} = Y_{21} = -y_{12} = -(10 - j20) = -10 + j20$$

$$Y_{13} = Y_{31} = -y_{13} = -(10 - j30) = -10 + j30$$

$$Y_{22} = y_{21} + y_{23} = (10 - j20) + (16 - j32) = 26 - j52$$

$$Y_{23} = Y_{32} = -y_{23} = -(16 - j32) = -16 + j32$$

$$Y_{33} = y_{31} + y_{32} = (10 - j30) + (16 - j32) = 26 - j62$$

$$Y_{bus} = \begin{bmatrix} 20 - j50 & -10 + j20 & -10 + j30 \\ -10 + j20 & 26 - j52 & -16 + j32 \\ -10 + j30 & -16 + j32 & 26 - j62 \end{bmatrix}$$
bus 2,
$$P_{2} = P_{G2} - P_{D2} = 0 - \frac{256.6}{100} = -2.566 \text{ p.u.}$$

$$Q_{2} = Q_{G2} - Q_{D2} = 0 - \frac{110.2}{100} = -1.102 \text{ p.u.}$$
bus 3,
$$P_{3} = P_{G3} - P_{D3} = 0 - \frac{138.6}{100} = -1.386 \text{ p.u.}$$

$$Q_{3} = Q_{G3} - Q_{D3} = 0 - \frac{45.2}{100} = -0.452 \text{ p.u.}$$

First iteration

Set k = 0, bus 1 is the slack bus.

$$\therefore \qquad V_1^0 = V_1^1 = V_1^2 = V_1^3 = \dots = 1.05 + j0.0$$

Assume a flat start voltage for PQ buses

$$V_2^0 = 1 \angle 0; V_3^0 = 1 \angle 0$$

The voltage at bus 2 is

$$(V_2)^1 = \frac{1}{Y_{22}} \left[\frac{P_2 - jQ_2}{(V_2^0)^*} - Y_{21}V_1^1 - Y_{23}V_3^0 - Y_{24}V_4^0 \right]$$
$$V_2^1 = \frac{1}{26 - j52} \left[\frac{-2.566 + j1.102}{1 - j0.0} - (-10 + j20)1.05 - (-16 + j32)1.0 \right]$$
$$= 0.9825 - j0.0310$$

The voltage at bus 3 is

$$(V_3)^1 = \frac{1}{Y_{33}} \left[\frac{P_3 - jQ_3}{(V_3^0)^*} - Y_{31}V_1^1 - Y_{32}V_2^1 \right]$$
$$V_3^1 = \frac{1}{26 - j62} \left[\frac{-1.386 + j0.452}{1 - j0} - (-10 + j30) (1.05) - (-16 + j32) (0.9825 - j0.0310) \right] = 1.0011 - j0.0353$$

The bus voltages at the end of the first iteration are

$$V_1^1 = 1.05 + j0$$

$$V_2^1 = 0.9825 - j0.0310$$

$$V_3^1 = 1.0011 - j0.0353$$

(b) Verify the result using Power World Simulator (PWS): The one line diagram of a simple bus system is drawn in PWS, which is shown in Figure 2.3.

Figure 2.3 One line diagram of a simple three bus system (in PWS).

The first step is the formation of $[Y_{bus}]$ using the inspection method. The calculated $[Y_{bus}]$ values are given in Figure 2.4. Since the given problem is a three bus system, the size of $[Y_{bus}]$ is 3×3 matrix.

	X Y Bus (Bus Admittance Matrix)								
	🔲 語 非 ‰ ∞ 🛯 🏘 魏 班 Records ▼ Geo ▼ Set ▼ Columns ▼ 国▼ 鬱▼ 鬱▼ 🌹 賟▼ 瀧 f(x) ▼ 田								
-	Filter Advanced • Bus • Find Remove								
		Number	Name	Bus	1	Bus	2	Bus	3
	1	1	1	20.00 - j50	0.00	-10.00 + j2	0.00	-10.00 +	j30.00
	2	2	2	-10.00 + ji	20.00	26.00 - j52	.00	-16.00 +	j32.00
	3	3	3	-10.00 + j	30.00	-16.00 + j3	2.00	26.00 - j6	2.00

Figure 2.4 Y_{bus} result.

There are three possible methods for executing load flow studies in Power World Simulator (PWS).

Gauss-Seidel method

Before executing this method, the number of iterations is to be fixed as 1 in *simulator options ribbon* to get the first iteration result. This method is executed by pressing the icon *Gauss–Seidel power flow* available in *tools ribbon*. The power flows and voltages are given in Figure 2.5 for the 1st iteration.

	B 🕫 B	11 g	5 68 6	⊗ = Bus P	ower	Flows	- Case: boo	ok_sample.PWB	Status	: Paused	Simul	ator .		σ x
	Case Info	rmatio	n Draw	Onelines	Tools	Option	ns Add One	s Window					@ -	e x
Edit Mode Run Mode Mode	● Mode ♥ Area 差 Limit	el Explo /Zone f : Moniti C	orer Filters oring ase Inform	Network • Aggregation • Solution Detail: nation	33 - 69	Differer	ice Flows * or Options	Case Description Case Summary Custom Case Info Case Data	Power Quick F AUX E	Flow List Power Flow «port Forma	List at Desc	钳 Bus III Subs 躍 Oper	View itation Vie n Window Views	w s •
E # **	18 ÷% #	1.1	Records •	Geo • Set •	Colum	ns • 📾	· · · · · · · ·	♥ 興• 譅 f(x) • ⊞	Power	Flow List				
									Bus	s Flow	s			
BUS	1	1		138	.0	MW	Mvar	MVA	8 1.0)500	0.00	1	1	
GENER	RATOR	1			193	.85	149.73	R 244.9						
TO	2	2		1	167	.41	123.50	208.0	0					
TO	3	3		1	26	.44	26.23	37.2	0					
* * * *	Misma	atch	****		193	.85	149.73							
BUS	2	2		138	.0	MW	Mvar	MVA	8 0.9	9719	-2.37	1	1	
LOAD	1				400	.00	250.00	471.7						
TO	1	1		1	-159	.56	-107.80	192.6	0					
TO	3	3		1	-223	.06	-150.52	269.1	0					
* * * *	Misma	atch	* * * *		-17	.39	8.32							
BUS	3	3		138	.0	MW	Mvar	MVA	8 1.0	0400	-0.28	1	1	
GENER	RATOR	1			200	.00	143.83	R 246.3						
TO	1	1		1	-26	.32	-25.85	36.9	0					
TO	2	2		1	232	.64	169.68	287.9	0					
* * * *	Misma	atch	* * * *		193	.68	143.83							

Figure 2.5 Power flow results and voltages—1st iteration.

Now change the number of iterations as 2 in *simulator options ribbon* for getting the results of the second iteration and execute *Gauss–Seidel power flow*. The results are shown in Figure 2.6 for iteration 2.

86 Electrical Power Systems: Analysis, Security and Deregulation

	8 58 6 #	3 68 E	S = Bus Power	er Flows	- Case: boo	ok_sample.PWB	Status: Pauseo	l Simu	lator	. x
	Case Informat	tion Draw	v Onelines Too	ols Optic	ns Add On:	s Window			@ -	≂ x
Edit Mode Run Mode Mode	■Model Exp ♥ Area/Zon 拳Limit Mor	plorer e Filters hitoring Case Infori	Network - Aggregation - Solution Details - mation	™Differen Simula	nce Flows + tor Options	Case Description Case Summary Custom Case Info Case Data	Power Flow List Quick Power Flow AUX Export Form	/ List at Desc	HBus View Substation View Open Windows Views	w
日日十	18 +98 M 25	Records •	Geo • Set • Col	umns 🕶 🖽	· 10- 10- 1	♥ 興• 譅 f(x) • ⊞	Power Flow List	1		
BUS	1 1		138.0	MW	Mvar	MVA	\$ 1.0500	0.00	1 1	
GENEF	ATOR 1		2	08.07	144.78	R 253.5				
TO	2 2		1 1	74.39	120.92	212.2	0			
TO	3 3		1	33.68	23.87	41.3	0			
* * * *	Mismatc	h ****	2	08.07	144.78					
BUS	22		138.0	MW	Mvar	MVA	8 0.9717	-2.56	1 1	
LOAD	1		4	00.00	250.00	471.7				
TO	1 1		1 -1	66.22	-104.58	196.4	0			
TO	33		1 -2	26.67	-149.32	271.4	0			
* * * *	Mismatc	h ****		-7.11	3.90					
BUS	3 3		138.0	MW	Mvar	MVA	8 1.0400	-0.40	1 1	
GENEF	ATOR 1		2	00.00	145.42	R 247.3				
TO	1 1		1 -	33.52	-23.40	40.9	0			
TO	2 2		1 2	36.42	168.83	290.5	0			
* * * *	Mismatc	h ****	1	97.10	145.42					

Figure 2.6 Power flow results and voltages—2nd iteration.

Figure 2.6 indicates that there are mismatches in all three bus voltages. So, the execution should be continued until converged solution is obtained. This method gives converged results after 8th iterations for this problem. Before executing the program, the numbers of iterations have to be changed as 10. This is shown in Figure 2.7.

Edit Mode 🛞 📰 🚱 Acontingency Analysis @ Time Step Simulation 🖹	
Annotae Prive Flow Tools Restore - 1/2 Built Analysis - Line Cooling Reputation - Tools - Mode - Tools - Mode - Tools - Tools - Mode - Tools - Mode - Tools - Mode - Tools - T	
Script Command Execution Dialog: Submode = POWERFLOW	
uxiliary File Quick Aux Export Field Names Message Log: book_sample.PWB	2
Execute @ Execute on ENTER key Abort Script: SolvePowerFlow(GAUSSSEIDEL, "book_sample");}	
SolvePowerFlow(GAUSSSEIDEL, "book_sample"); Number: 0 Max P: 286.000 at bus 2 Max Q: 22.000 at bus Number: 1 Max P: 17.396 at bus 2 Max Q: 3.318 at bus Number: 2 Max P: 7.114 at bus 2 Max Q: 3.899 at bus Number: 2 Max P: 7.300 at bus 2 Max Q: 3.899 at bus Number: 3 Max P: 7.303 at bus 2 Max Q: 0.303 at bus Number: 4 Max P: 0.293 at bus 2 Max Q: 0.303 at bus Number: 6 Max P: 0.293 at bus 2 Max Q: 0.129 at bus Number: 7 Max P: 0.206 at bus 2 Max Q: 0.129 at bus Number: 7 Max P: 0.013 at bus 2 Max Q: 0.024 at bus	2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 2.7 Details of convergence and iterations.

The final solutions are obtained after 8th iterations and it is shown in Figure 2.8.

	18 ge 1	5 tt 1		8) = Bi	us Por	wer F	lows	- Case: boo	k_sample.PV	VB S	tatus: Pause	d Simu	lator		×
	Case Info	ormatic	n Draw	Onelin	es T	ools	Optic	ins Add Ons	Window					· ·	. x
Edit Mode Run Mode	e Mod 字 Area 登 上imi	el Expl a/Zone t Monit	orer Filters toring	Network Aggregation Solution D	• on • Details	- Bi	Differe Simula	nce Flows + tor Options	Case Description Case Summary. Custom Case Ini Case Date	n fo	Power Flow List. Quick Power Flo AUX Export Forn	w List nat Desc	間 Bus 1 間 Subs 識 Oper	View Itation View Windows Views	
: 🖸 🏭 🕸	1.8 +93 🌢	4 25	Records •	Geo • S	et • C	Column	s • 🖻	·	₹ 興• 譅 f(x)•		Power Flow List	1			
BUS	1	1		1	138.	0	MW	Mvar	MVA	8	1.0500	0.00	1	1	
GENE	RATOR	1			-	218	.36	140.88	R 259.9						
TO	2	2		1	b.	179.	.33	118.75	215.1	0					
TO	3	3		1	Ĺ,	39.	.03	22.13	44.9	0					
****	Misma	atch	****			218	.36	140.88							
BUS	2	2		1	L38.	0	MW	Mvar	MVA	8	0.9717	-2.70	1	1	
LOAD	1					400	.00	250.00	471.7						
ТО	1	1		1	L -	170.	.94	-101.96	199.0	0					
ТО	3	3		1	L	229	.02	-148.06	272.7	0					
BUS	3	3		1	138.	0	MW	Mvar	MVA	8	1.0400	-0.50	1	1	
GENE	RATOR	1				200	.00	146.17	R 247.7						
TO	1	1		1	L	-38	.85	-21.58	44.4	0					
TO	2	2		1		238	.86	167.75	291.9	0					
* * * *	Misma	atch	****			199.	. 98	146.17							

Figure 2.8 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in Figure 2.9.

Figure 2.9 One line diagram of a simple three bus system (in PSS/E).

Once the data are entered in the software it can be executed by the above three power flow methods. Figure 2.10 shows the converged results obtained by the Gauss–Seidel method. This window is generated from *bus based report*.

2.5.2 Gauss-Seidel Method When PV Buses are Present

Some of the buses in an *n* bus power system are *PV* buses where *P* and *V* are specified but *Q* and δ are unknowns. The calculation strategy of Load flow solution with *PV* buses is different for *PQ* buses. Let the bus be numbered as

	-	0	\mathfrak{c}	
ER BRANCHES	XZONEX 1 1 1	XZONEX 1 1	XZONEX 1 1 1	t /
LANSFORMERS DN-TRANSFORM	XAREAX 1 1 1	XAREAX 1 1 1	XAREAX 1 1 1	Repoi
VA FOR TR FOR NC	SSESX MVAR 16.79 0.55	SSESX MVAR 16.79 19.69	SSESX MVAR 0.55 19.69	el method.
%M %I	XLO MV 8.39 0.18	X-L0 MV 8.39 9.84	XLO MV 0.18 9.84	ss-Seid
11:58 LATING SET A	0.00	-2.70	-0.50	, ing Gau
UN 27 2011 H	% 1.0500PU 260 kV	% 0.9717PU kV	% 1.0400PU 248 kV	sed results us
MON, J	MVA 260.0 215.1 44.9	MVA 471.7 199.1 272.7	MVA 247.7 44.5 291.8	Conver
ER S®E	MVAR 140.9R 118.8 22.2	MVAR 250.0 -102.0 -148.1	MVAR 146.1R -21.6 167.8) gure 2.10
E POWI ORPS	MV 218.4 179.3 39.1	MV 400.0 -171.0 -229.0	MV 200.0 -38.9 238.9	, Fig
RACTIV MULAT	CKT 1 1	CKT 1 1	CKT 1 1	r r
PTI INTE SYSTEM SI	1 SLACK BUS M GENERATION 2 LOAD BUS 3 GEN BUS	2 LOAD BUS LOAD-PQ 1 SLACK BUS 3 GEN BUS	3 GEN BUS M GENERATION 1 SLACK BUS 2 LOAD BUS	, ,
	BUS FRO TO TO	BUS TO I TO I TO	BUS FRO TO TO	ŕ

i = 1 slack bus i = 2, 3, 4, ..., n PQ buses i = n + 1, n + 2, ..., n PV buses

Computational procedure

At the voltage controlled buses, bus voltages are specified and reactive power limits are also specified, i.e. $|V_i| = |V_i|_{\text{spec}}$; $Q_{i,\min} < Q_i < Q_{i,\max}$

- 1. Form the bus admittance matrix of the network by the direct inspection method, selecting the ground as reference [formation of Y_{bus}].
- 2. If slack bus is not specified, select one of the generator buses as the slack bus. The voltage at the slack bus is assumed as $V_i = V + j0.0$ [selection of the slack bus].
- 3. Assume initial values of voltages for all buses except the slack bus.

$$V_i^{(0)} = 1 + j0.0$$

- 4. For *PV* buses only angles $\delta_i^{(0)}$ have to be assumed.
- 5. Set convergence criterion = ε , i.e. if the largest of absolute of the residues exceeds the convergence criterion the process is repeated, otherwise it is terminated.
- 6. Set iteration count k = 0.
- 7. Bus count i = 1.
- 8. Check type of buses
 - (a) If *i*th bus is PQ bus, go to step 10.
 - (b) If *i*th bus is *PV* bus, go to the next step.
 - Set $|V_i^k| = |V_i|_{\text{spec}}$
- 9. Calculate the reactive power of generator bus using the following equation

$$Q_i^{k+1} = -\operatorname{im}\left[\left(V_i^k \right)^* \sum_{j=1}^{i-1} Y_{ij} \left(V_j \right)^{k+1} - \left(V_i^k \right)^* \sum_{j=1}^n Y_{ij} \left(V_j \right)^k \right]$$
(2.17)

- (a) If the calculated reactive power is within limits, then this bus can be treated as *PV* bus and set $Q_i = Q_i^{k+1}$.
- (b) If the calculated reactive power violates the limits, then this bus can be treated as PQ bus and set if

(i)
$$Q_i^{k+1} < Q_{i,\min}$$
, then $Q_i = Q_{i,\min}$

(ii)
$$Q_i^{k+1} > Q_{i,\max}$$
, then $Q_i = Q_{i,\max}$

10. Solve the voltage equation for bus i as, we know that

$$P_i - jQ_i = V_i^* \sum_{j=1}^n Y_{ij}V_j$$

$$\frac{P_{i} - jQ_{i}}{V_{i}^{*}} = V_{i} \sum_{j=0}^{n} Y_{ij} - \sum_{j=1}^{n} Y_{ij}V_{j} \qquad j \neq i$$
$$V_{i} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - jQ_{i}}{V_{i}^{*}} - \sum_{\substack{j=1\\j\neq i}}^{n} Y_{ij}V_{j} \right]$$

or

$$V_{i} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - jQ_{i}}{V_{i}^{*}} - \sum_{j=1}^{i-1} Y_{ij}V_{j} - \sum_{j=i+1}^{n} Y_{ij}V_{j} \right]$$

Equation (2.14) can be rewritten as

$$(V_i)^{k+1} = \frac{1}{Y_{ii}} \left[\frac{P_i - jQ_i}{(V_i^k)^*} - \sum_{j=1}^{i-1} Y_{ij} (V_j)^{k+1} - \sum_{j=i+1}^n Y_{ij} (V_j)^k \right]$$

11. Calculate the change in bus voltage

$$\Delta V_i^{k+1} = (V_i)^{k+1} - (V_i)^k$$

12. Acceleration of convergence: The process of convergence in the Gauss–Seidel method is slow as it requires larger number of iterations to obtain the solution. In this method, convergence can be increased by using the acceleration factor, denoted by α . In power flow studies, α is generally set about 1.6 and cannot exceed 2 if convergence is to occur. Therefore

$$V_{i,\text{acc}}^{k+1} = (V_i)^k + \alpha \,\Delta V_i^{k+1}$$

Calculate the bus voltages, i.e. V_i^{k+1} for all the buses except the slack bus, where i = 1, 2, 3, ..., n.

- 13. Repeat the iterating process until change in voltage (ΔV_i) for all the buses are within the specified or within the tolerance.
- 14. Finally calculate the power flow and power losses.

Current and power flows

$$j \to i$$

$$I_{ji} = I_L + I_{j0} = y_{ij}(V_j - V_i) + y_{j0}V_j$$

$$S_{ji} = V_j I_{ij}^* = V_j^2 (y_{ij} + y_{j0})^* - V_j y_{ij}^* V_i^*$$

Power loss

 $S_{\text{loss}ij} = S_{ij} + S_{ji}$

This completes the load flow study. Finally, in Figure 2.11 all the computational steps are summarized in the detailed flow chart.

Advantages and Disadvantages of Gauss-Seidel Method

Advantages

- The calculations are simple and so there is less programming task to perform.
- The memory requirement is small.
- Useful for the small systems.

Disadvantages

- Requires a large number of iterations to converge.
- Not suitable for large systems.
- Convergence time increases with the size of the system.

EXAMPLE 2.4 A three-bus power system is shown in Figure 2.12. The system parameters are given in Table 2.4 and the generation and demand data in Table 2.5. The voltage at bus 2 is maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generation at bus 2 are 35 and 0 MVAR respectively. Determine one iteration of the load flow solution using the Gauss–Seidel iterative method. Assume bus 1 as slack bus and acceleration factor $\alpha = 1.6$.

Bus code	Impedance in p.u.	Bus code	<i>Line charging admittance</i> y'_{ij}
			2
1-2	0.06 + j0.18	1	j0.05
1–3	0.02 + j0.06	2	<i>j</i> 0.06
2–3	0.04 + j0.12	3	j0.06

Table 2.4 Bus code and impedance

lable	2.5	Scheduled bus	voltages, real	and react	ive powers c	of genera	tion and	demand
-------	-----	---------------	----------------	-----------	--------------	-----------	----------	--------

Bus	Bus voltage	Gener	ration	Den	nand
<i>no</i> .		MW	MVAR	MW	MVAR
1	1.06 + j0.0		_	0	0
2	1.04 + j0.0	20		0	0
3	_	0	0	60	25

92 Electrical Power Systems: Analysis, Security and Deregulation

Figure 2.11 Flow chart for Gauss-Seidel method when PV buses are present.

Figure 2.12 Three bus power system.

Solution: To form the Y_{bus}

$$y_{10} = \frac{y_{12}'}{2} + \frac{y_{13}'}{2} = j0.05 + j0.06 = j0.11$$

$$y_{20} = \frac{y_{21}'}{2} + \frac{y_{22}'}{2} = j0.05 + j0.06 = j0.11$$

$$y_{30} = \frac{y_{31}'}{2} + \frac{y_{32}'}{2} = j0.06 + j0.06 = j0.12$$

$$y_{12} = \frac{1}{z_{12}} = \frac{1}{0.06 + j0.18} = 1.67 - j5$$

$$y_{13} = \frac{1}{z_{13}} = \frac{1}{0.02 + j0.06} = 5 - j15$$

$$y_{23} = \frac{1}{z_{23}} = \frac{1}{0.04 + j0.12} = 2.5 - j7.5$$

$$Y_{11} = y_{10} + y_{12} + y_{13} = j0.11 + (1.67 - j5) + (5 - j15) = 6.67 - j19.89$$

$$Y_{12} = Y_{21} = -y_{12} = -(1.67 - j5) = -1.67 + j5$$

$$Y_{22} = y_{20} + y_{21} + y_{23} = j0.11 + (1.67 - j5) + (2.5 - j7.5) = 4.17 - j12.39$$

$$Y_{23} = Y_{32} = -y_{23} = -(2.5 - j7.5) = -2.5 + j7.5$$

$$Y_{33} = y_{30} + y_{31} + y_{32} = j0.12 + (5 - j15) + (2.5 - j7.5) = 7.5 - j22.38$$

$$Y_{bus} = \begin{bmatrix} 6.67 - j19.89 & -1.67 + j5 & -5 + j15 \\ -1.67 + j5 & 4.17 - j12.39 & -2.5 + j7.5 \\ -5 + j15 & -2.5 + j7.5 & 7.5 - j22.38 \end{bmatrix}$$

At bus 2,

$$P_2 = P_{G2} - P_{D2} = \frac{20}{100} - 0 = 0.2 \text{ p.u.}$$
$$Q_2 = Q_{G2} - Q_{D2} = ? - 0 = ? \text{ p.u.}$$

At bus 3,

$$P_3 = P_{G3} - P_{D3} = 0 - \frac{60}{100} = -0.6 \text{ p.u.}$$

 $Q_3 = Q_{G3} - Q_{D3} = 0 - \frac{25}{100} = -0.25 \text{ p.u.}$

First iteration

Set k = 0, Bus 1 is slack bus.

$$\therefore \qquad V_1^0 = V_1^1 = V_1^2 = V_1^3 = \dots = 1.06 + j0.0$$
$$V_2^0 = 1.04 \angle 0$$

Assume a flat start voltage for PQ buses

$$V_3^0 = 1 \angle 0$$

Determine the voltage at bus 2.

Given the reactive power limit:

0 MVAR <
$$Q_{G2}$$
 < 35 MVAR or 0 p.u. < Q_{G2} < 0.3 p.u

So to find V_2^1 , first Q_2^1 is calculated.

$$\begin{split} (Q_i)^{k+1} &= -\mathrm{im} \left[(V_i^k)^* \sum_{j=1}^{i-1} Y_{ij} (V_j)^{k+1} - (V_i^k)^* \sum_{j=1}^n Y_{ij} (V_j)^k \right] \\ Q_2^1 &= -\mathrm{im} \left[(V_2^0)^* Y_{21} V_1^1 + (V_2^0)^* (Y_{22} V_2^0 + Y_{23} V_3^0) \right] \\ Q_2^1 &= -\mathrm{im} \left[(V_2^0)^* (Y_{21} V_1^1 + Y_{22} V_2^0 + Y_{23} V_3^0) \right] \\ Q_2^1 &= -\mathrm{im} \left[(1.04 - j0) \ (-1.67 + j5) \ (1.06 + j0.0) + (4.17 - j12.4) \right. \\ & \left. (1.04 - j0) + (-2.5 + j7.5) \ (1 + j0.0) \right] \\ Q_2^1 &= -\mathrm{im} \left[0.06947 - j0.09984 \right] \\ Q_2^1 &= 0.09984 \end{split}$$

The value of Q_2^1 is within the limits and so the reactive power limit is not violated. Therefore bus 2 can be treated as PV bus.

Now to find V_2^1

$$\begin{split} V_2^1 &= \frac{1}{Y_{22}} \left[\frac{P_2 - jQ_2^1}{(V_2^0)^*} - Y_{21}V_1^1 - Y_{23}V_3^0 \right] \\ V_2^1 &= \frac{1}{4.17 - j12.4} \left[\frac{0.2 - j0.09984}{1.04 - j0.0} - (-1.67 + j5)1.06 - (-2.5 + j7.5)(1.0) \right] \\ &= 1.0432 \angle 0.4985^\circ \\ \delta_2^1 &= \angle 0.4985^\circ \end{split}$$

We get $|V_2^1| = |V_2^1|_{\text{spec}} \angle \delta_2^1 = 1.01 \angle 0.4985^\circ = 1.0399 + j0.009$ The voltage at bus 3 (*PQ* bus) is

$$(V_3)^1 = \frac{1}{Y_{33}} \left[\frac{P_3 - jQ_3}{(V_3^0)^*} - Y_{31}V_2^1 - Y_{32}V_2^1 \right]$$

$$V_3^1 = \frac{1}{7.5 - j22.38} \left[\frac{-0.6 + j0.25}{1 - j0} - (5 + j15) (1.06) - (-2.5 + j7.5) (1.0399 + j0.009) \right]$$

= 0.9499 + j0.0109
$$\Delta V_3^1 = (V_3)^1 - (V_3)^0 = (0.9499 + j0.0109) - (1 + j0.0) - (-0.0501 + j0.0109) - (-0.0501 + j0.0109)$$

= -0.0501 + j0.0109
$$V_{3,acc}^1 = (V_3)^0 + \alpha \Delta V_3^1 = (-1 + j0.0) + 1.6 \times (-0.0501 + j0.0109) - (-0.0501 + j0$$

The bus voltages at the end of the first iteration are

$$V_1^1 = 1.06 + j0$$

$$V_2^1 = 1.0399 + j0.009$$

$$V_3^1 = 0.91984 - j0.01744$$

EXAMPLE 2.5 If the reactive power constraint on generator 2 is 0.2 p.u. $< Q_{G2} < 0.5$ p.u. in the Example 2.4, then find the bus voltages at the end of the first iteration. Assume the acceleration factor is 1.6.

Solution: In the previous example we have calculated Q_2^1 as

$$Q_2^1 = 0.09984$$

This value of reactive power violates the lower limit of Q_{G2} . Therefore Q_{G2} is fixed at 0.2 p.u. Hence the bus 2 is considered as a load bus. Now

At bus 2,

$$P_{2} = P_{G2} - P_{D2} = \frac{20}{100} - 0 = 0.2 \text{ p.u.}$$

$$Q_{2} = Q_{G2} - Q_{D2} = 0.2 - 0 = 0.2 \text{ p.u.}$$
At bus 3,

$$P_{3} = P_{G3} - P_{D3} = 0 - \frac{60}{100} = -0.6 \text{ p.u.}$$

$$Q_{3} = Q_{G3} - Q_{D3} = 0 - \frac{25}{100} = -0.25 \text{ p.u.}$$
First iteration
Set $k = 0$, bus 1 is the slack bus.

$$\therefore \qquad V_{1}^{0} = V_{1}^{1} = V_{1}^{2} = V_{1}^{3} = \dots = 1.06 + j0.0$$

Assume a flat start voltage for PQ buses

$$V_2^0 = 1 \angle 0$$
$$V_3^0 = 1 \angle 0$$

The voltage at bus 2 (PQ bus) is

$$\begin{split} V_2^1 &= \frac{1}{Y_{22}} \left[\frac{P_2 - jQ_2^1}{(V_2^0)^*} - Y_{21}V_1^1 - Y_{23}V_3^0 \right] \\ V_2^1 &= \frac{1}{4.17 - j12.4} \left[\frac{0.2 - j0.2}{(1 - j0.0)} - (-1.67 + j5)1.06 - (-2.5 + j7.5)(1.0) \right] \\ &= 1.0508 + j0.00713 \\ \Delta V_2^1 &= (V_2)^1 - (V_2)^0 = (1.0508 + j0.00713) - (1 + j0.0) \\ &= 0.0508 + j0.00713 \\ V_{2,acc}^1 &= (V_2)^0 + \alpha \Delta V_2^1 = (1 + j0.0) + 1.6 \times (0.0508 + j0.00713) \\ &= 1.08128 + j0.0114 \end{split}$$

The voltage at bus 3 (PQ bus) is

$$(V_3)^1 = \frac{1}{Y_{33}} \left[\frac{P_3 - jQ_3}{(V_3^0)^*} - Y_{31}V_2^1 - Y_{32}V_2^1 \right]$$

$$V_3^1 = \frac{1}{7.5 - j22.38} \left[\frac{-0.6 + j0.25}{1 - j0} - (5 + j15) (1.06) - (-2.5 + j7.5) (1.08128 + j0.0114) \right]$$

$$= 0.963 + j0.0117$$

$$\Delta V_3^1 = (V_3)^1 - (V_3)^0 = (0.963 + j0.0117) - (1 + j0.0)$$

$$= -0.037 + j0.0117$$

$$V_{3,acc}^1 = (V_3)^0 + \alpha \Delta V_3^1 = (1 + j0.0) + 1.6 \times (-0.037 + j0.0117)$$

$$= 0.9421 - j0.01872$$

The bus voltages at the end of the first iteration are

$$V_1^1 = 1.06 + j0$$

$$V_2^1 = 1.08128 + j0.0114$$

$$V_3^1 = 0.9421 - j0.01872$$

2.6 Newton-Raphson Load Flow Method

2.6.1 Introduction

The Newton–Raphson method is a competent algorithm to solve nonlinear equations. It transforms the procedure of solving nonlinear equations into the procedure of repeatedly solving linear equations. This sequential linearization process is the core of the Newton–Raphson method.

$$f(x) = 0 \tag{2.18}$$

Let us assume that f(x) is continuous and differential at a point x(0), the initial guess for the sought root. Assume the real solution x is close to x(0),

$$x = x^{(0)} - \Delta x^{(0)} \tag{2.19}$$

where $\Delta x^{(0)}$ is a correction value of $x^{(0)}$. The following equation embraces to $f(x^{(0)}, \Delta x^{(0)}) = 0$ (2.20)

$$f(x^{(0)} - \Delta x^{(0)}) = 0 \tag{2.20}$$

Now expanding the above equation in a Taylor series expansion about point $x^{(0)}$ yields:

$$f(x^{(0)} - \Delta x^{(0)}) = f(x^{(0)}) - f'(x^{(0)}) \Delta x^{(0)} + f''(x^{(0)}) \frac{(\Delta x^{(0)})^2}{2!} - \dots + (-1)^n f^n(x^{(0)}) \frac{(\Delta x^{(0)})^n}{n!} + \dots = 0$$
(2.21)

where $f'(x^{(0)})$, ..., $f^n(x^{(0)})$ are the different order partial derivatives of f(x) at x(0). If the initial guess is sufficiently close to the actual solution, the higher order terms of the Taylor series expansion could be neglected. Equation (2.21) becomes

$$f(x^{(0)}) - f'(x^{(0)}) \Delta x^{(0)} = 0$$
(2.22)

This is a linear equation in $\Delta x^{(0)}$ and can be easily solved.

Using $\Delta x^{(0)}$ to modify $x^{(0)}$, we can get $x^{(1)}$

$$x^{(1)} = x^{(0)} - \Delta x^{(0)} \tag{2.23}$$

 $x^{(1)}$ may be close to the actual solution. Then using $x^{(1)}$ as the new guess value, we solve the following equation similar to Eq. (2.22)

$$f(x^{(1)}) - f'(x^{(1)}) \Delta x^{(1)} = 0$$
(2.24)

Thus $x^{(2)}$ is obtained.

$$x^{(2)} = x^{(1)} - \Delta x^{(1)} \tag{2.25}$$

Repeat this procedure to establish the correction equation in the *k*th iteration:

$$f(x^{(k)}) - f'(x^{(k)}) \Delta x^{(k)} = 0$$
(2.26)

or

$$f(x^{(k)}) = f'(x^{(k)}) \Delta x^{(k)}$$
(2.27)

The left-hand of the above equation can be considered as the error produced by the approximate solution $x^{(k)}$. When $f(x^{(k)}) \Rightarrow 0$, Eq. (2.18) is satisfied, so $x^{(k)}$ is the solution of the equation.

Now we will extend the Newton's method to simultaneous nonlinear equations. Assume the nonlinear equations with variables x_1, x_2, \dots, x_n :

$$\begin{array}{c}
f_1(x_1, x_2, \dots, x_n) = 0 \\
f_2(x_1, x_2, \dots, x_n) = 0 \\
\vdots \\
f_n(x_1, x_2, \dots, x_n) = 0
\end{array}$$
(2.28)

Specify the initial guess values of all variables $x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}$. Let $\Delta x_1^{(0)}, \Delta x_2^{(0)}, \Delta x_3^{(0)}, \dots, \Delta x_n^{(0)}$ be the correction values to satisfy the following equations:

$$f_{1}(x_{1}^{(0)} - \Delta x_{1}^{(0)}, x_{2}^{(0)} - \Delta x_{2}^{(0)}, \dots, x_{n}^{(0)} - \Delta x_{n}^{(0)}) = 0$$

$$f_{2}(x_{1}^{(0)} - \Delta x_{1}^{(0)}, x_{2}^{(0)} - \Delta x_{2}^{(0)}, \dots, x_{n}^{(0)} - \Delta x_{n}^{(0)}) = 0$$

$$\vdots$$

$$f_{n}(x_{1}^{(0)} - \Delta x_{1}^{(0)}, x_{2}^{(0)} - \Delta x_{2}^{(0)}, \dots, x_{n}^{(0)} - \Delta x_{n}^{(0)}) = 0$$

$$(2.29)$$

Expanding the above equations via the multivariate Taylor series and neglecting the higher order terms, we have the following equations:

$$f_{1}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \left[\left(\frac{\partial f_{1}}{\partial x_{1}} \right)^{(0)} \Delta x_{1}^{(0)} + \left(\frac{\partial f_{1}}{\partial x_{2}} \right)^{(0)} \Delta x_{2}^{(0)} + \dots + \left(\frac{\partial f_{1}}{\partial x_{n}} \right)^{(0)} \Delta x_{n}^{(0)} \right] = 0$$

$$f_{2}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \left[\left(\frac{\partial f_{2}}{\partial x_{1}} \right)^{(0)} \Delta x_{1}^{(0)} + \left(\frac{\partial f_{2}}{\partial x_{2}} \right)^{(0)} \Delta x_{2}^{(0)} + \dots + \left(\frac{\partial f_{2}}{\partial x_{n}} \right)^{(0)} \Delta x_{n}^{(0)} \right] = 0$$

$$\vdots$$

$$f_{n}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \left[\left(\frac{\partial f_{n}}{\partial x_{1}} \right)^{(0)} \Delta x_{1}^{(0)} + \left(\frac{\partial f_{n}}{\partial x_{2}} \right)^{(0)} \Delta x_{2}^{(0)} + \dots + \left(\frac{\partial f_{n}}{\partial x_{n}} \right)^{(0)} \Delta x_{n}^{(0)} \right] = 0 \right]$$

$$(2.30)$$

Here $(\partial f_1/\partial x_2)^{(0)}$ is the partial derivative of function $f_1(x_1, x_2, ..., x_n)$ over independent variable x_j at the point $(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})$. Rewrite the above equation in the matrix form.

$$\begin{bmatrix} f_{1}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \\ f_{2}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \\ \vdots & \vdots \\ f_{n}(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{n}^{(0)}) \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial f_{1}}{\partial x_{1}}\right)^{(0)} & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{(0)} & \cdots & \left(\frac{\partial f_{1}}{\partial x_{n}}\right)^{(0)} \\ \left(\frac{\partial f_{2}}{\partial x_{1}}\right)^{(0)} & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{(0)} & \cdots & \left(\frac{\partial f_{2}}{\partial x_{n}}\right)^{(0)} \\ \vdots \\ \left(\frac{\partial f_{n}}{\partial x_{1}}\right)^{(0)} & \left(\frac{\partial f_{n}}{\partial x_{2}}\right)^{(0)} & \cdots & \left(\frac{\partial f_{n}}{\partial x_{n}}\right)^{(0)} \end{bmatrix} \begin{bmatrix} \Delta x_{1}^{(0)} \\ \Delta x_{2}^{(0)} \\ \vdots \\ \Delta x_{n}^{(0)} \end{bmatrix}$$

$$(2.31)$$

After solving $\Delta x_1^{(0)}, \Delta x_2^{(0)}, \dots, \Delta x_n^{(0)}$ from the above equation, we get

$$x_{1}^{(1)} = x_{1}^{(0)} - \Delta x_{1}^{(0)}$$

$$x_{2}^{(1)} = x_{2}^{(0)} - \Delta x_{2}^{(0)}$$

$$\vdots$$

$$x_{n}^{(1)} = x_{n}^{(0)} - \Delta x_{n}^{(0)}$$

$$(2.32)$$

 $x_1^{(1)}, x_2^{(1)}, \ldots, x_n^{(1)}$ will approach the actual solution more closely. The updated values are used as the new guess to solve the correction equation (2.31) and to further correct the variables. In this way the iterative process of the Newton–Raphson method is formed.

Generally, the correction in the kth iteration can be written as

$$\begin{bmatrix} f_{1}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \\ f_{2}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \\ \vdots \\ f_{n}(x_{1}^{(k)}, x_{2}^{(k)}, \dots, x_{n}^{(k)}) \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial f_{1}}{\partial x_{1}}\right)^{(k)} & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{(k)} & \cdots & \left(\frac{\partial f_{2}}{\partial x_{n}}\right)^{(k)} \\ \left(\frac{\partial f_{2}}{\partial x_{1}}\right)^{(k)} & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{(k)} & \cdots & \left(\frac{\partial f_{2}}{\partial x_{n}}\right)^{(k)} \\ \vdots \\ \left(\frac{\partial f_{n}}{\partial x_{1}}\right)^{(k)} & \left(\frac{\partial f_{n}}{\partial x_{2}}\right)^{(k)} & \cdots & \left(\frac{\partial f_{n}}{\partial x_{n}}\right)^{(k)} \end{bmatrix} \begin{bmatrix} \Delta x_{1}^{(k)} \\ \Delta x_{2}^{(k)} \\ \vdots \\ \Delta x_{n}^{(k)} \end{bmatrix}$$

$$(2.33)$$

The above equation can be expressed in the matrix form as $\mathbf{F} = \mathbf{J}\mathbf{C} \tag{2.34}$

where,

$$\mathbf{F} = \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \\ \vdots \\ f_n(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \end{bmatrix}$$
(2.35)

_

is the error vector in the *k*th iteration.

_

$$\mathbf{J} = \begin{bmatrix} \left(\frac{\partial f_1}{\partial x_1}\right)^{(k)} & \left(\frac{\partial f_1}{\partial x_2}\right)^{(k)} & \cdots & \left(\frac{\partial f_1}{\partial x_n}\right)^{(k)} \\ \left(\frac{\partial f_2}{\partial x_1}\right)^{(k)} & \left(\frac{\partial f_2}{\partial x_2}\right)^{(k)} & \cdots & \left(\frac{\partial f_2}{\partial x_n}\right)^{(k)} \\ \vdots & \vdots & \cdots & \vdots \\ \left(\frac{\partial f_n}{\partial x_1}\right)^{(k)} & \left(\frac{\partial f_n}{\partial x_2}\right)^{(k)} & \cdots & \left(\frac{\partial f_n}{\partial x_n}\right)^{(k)} \end{bmatrix}$$
(2.36)

is the first derivative matrix and it is called Jacobian matrix.

$$\mathbf{C} = \begin{bmatrix} \Delta x_1^{(k)} \\ \Delta x_2^{(k)} \\ \vdots \\ \Delta x_n^{(k)} \end{bmatrix}$$
(2.37)

is the correction value vector in the kth iteration.

We also have the equation similar to Eq. (2.32)

$$X^{(k+1)} = X^{(k)} - \Delta X^{(k)}$$
(2.38)

The state update vector $\Delta X^{(k)}$ is calculated from Eq. (2.33) by taking the inverse of the Jacobian matrix. Thus we get

$$X^{(k)} = -[J]^{-1}F (2.39)$$

With Eqs. (2.34) and (2.38) solved alternately in each iteration, $X^{(k+1)}$ gradually approaches the actual solution. Convergence can be evaluated by the norm of the correction value,

$$|\Delta X^{(k)}| < \varepsilon \tag{2.40}$$

2.6.2 Load Flow Solution Using Newton-Raphson Method

For large interconnected power systems among the numerous solution methods available for load flow analysis, the Newton–Raphson method is considered to be the most important. Many advantages are attributed to the Newton–Raphson approach. Its convergence characteristics are relatively powerful compared to the alternative processes, and very low computing times are achieved when sparse network equations are solved by the technique of sparsity programmed ordered elimination. The reliability of the Newton–Raphson method is comparatively good, since it can solve cases that lead to divergence with the other popular processes, but the method is by no means reliable. Failure does not occur on some ill-conditioned problems.

The number of iterations required to obtain a solution is independent of the system size, but more functional evaluations are required at each iteration. Since in the load flow problem real power and magnitude of bus voltage are specified for the PV buses, the load flow equation is formulated in the polar form.

The load flow equations can be rewritten as follows. Real power

$$P_{i}^{(k)} = |V_{i}| \sum_{j=1}^{n} |V_{j}| |Y_{ij}| \cos(\theta_{ij} + \delta_{j} - \delta_{i})$$
(2.41)

Reactive power

$$Q_i^{(k)} = -|V_i| \sum_{j=1}^n |V_j| |Y_{ij}| \sin(\theta_{ij} + \delta_j - \delta_i)$$
(2.42)

We have two equations for each load bus, given by Eqs. (2.41) and (2.42), and one equation for each voltage controlled bus, given by Eq. (2.41). Expanding Eqs. (2.41) and (2.42) in Taylor's series about the initial estimate and neglecting all higher order terms result in the following set of linear equations.

$$\begin{bmatrix} \Delta P_{2}^{(k)} \\ \vdots \\ \Delta P_{n}^{(k)} \\ \vdots \\ \Delta Q_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{2}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial |V_{n}|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{n}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial |V_{n}|} \\ \frac{\partial Q_{2}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{2}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{2}^{(k)}}{\partial |V_{n}|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Q_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{n}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{n}^{(k)}}{\partial |V_{n}|} \end{bmatrix} \begin{bmatrix} \Delta \delta_{2}^{(k)} \\ \vdots \\ \Delta \delta_{n}^{(k)} \\ \Delta |V_{2}^{(k)}| \\ \vdots \\ \Delta |V_{n}^{(k)}| \end{bmatrix}$$
(2.43)

In the above equation, bus 1 is assumed to be the slack bus. The Jacobian matrix gives the linearised relationship between small changes in voltage angle $\Delta \delta_i^{(k)}$ and voltage magnitude $\Delta |V_i^{(k)}|$ with the small changes in real and reactive powers $\Delta P_i^{(k)}$ and $\Delta Q_i^{(k)}$ respectively. The elements of the Jacobian matrix are the partial derivatives of Eqs. (2.41) and (2.42), calculated at $\Delta \delta_i^{(k)}$ and $\Delta |V_2^{(k)}|$.

The above equation can be written as

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2.44)

For the *PV* buses, the voltage magnitudes are known. Therefore, if *m* buses of the system are voltage controlled equations involving ΔQ and ΔV , and the corresponding columns of the Jacobian matrix are eliminated, then there are (n-1) real power constraints and (n-1-m) reactive power constraints, and the order of the complete Jacobian matrix is $(2n - 2 - m) \times (2n - 2 - m)$.

Order of Jacobian matrix \mathbf{J}_1 is $(n-1) \times (n-1)$.

Order of Jacobian matrix \mathbf{J}_2 is $(n-1) \times (n-1-m)$.

Order of Jacobian matrix \mathbf{J}_3^2 is $(n-1-m) \times (n-1)$.

Order of Jacobian matrix \mathbf{J}_4 is $(n-1-m) \times (n-1-m)$.

Elements of Jacobian matrix J_1

(i) the diagonal elements are

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j)$$
(2.45)

(ii) the off-diagonal elements are

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i||V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.46)

Elements of Jacobian matrix J_2

(i) the diagonal elements are

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos\theta_{ii} + \sum_{j\neq i} |V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.47)

(ii) the off-diagonal elements are

$$\frac{\partial P_i}{\partial |V_j|} = |V_i| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.48)

Elements of Jacobian matrix J_3

(i) the diagonal elements are

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.49)

(ii) the off-diagonal elements are

$$\frac{\partial Q_i}{\partial \delta_j} = -|V_i||V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.50)

Elements of Jacobian matrix J_4

(i) the diagonal elements are

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin\theta_{ii} - \sum_{j\neq i} |V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j)$$
(2.51)

(ii) the off-diagonal elements are

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i||Y_{ij}|\sin\left(\theta_{ij} - \delta_i + \delta_j\right) \qquad j \neq i \qquad (2.52)$$

Difference in scheduled to calculated power (power residuals) is given by

$$\Delta P_i^{[k]} = P_{i,\text{sch}} - P_i^{[k]}$$
(2.53)

$$\Delta Q_i^{[k]} = Q_{i,\text{sch}} - Q_i^{[k]} \tag{2.54}$$

The new estimates for the voltage magnitude and angle

$$\delta_i^{[k+1]} = \delta_i^{[k]} + \Delta \delta_i^{[k]} \tag{2.55}$$

$$|V_i^{[k+1]}| = |V_i^{[k]}| + \Delta |V_i^{[k]}|$$
(2.56)

Computation procedure

- 1. Set flat start
 - For load buses, set the voltages equal to the slack bus or $1 \angle 0^\circ$.
 - For generator buses, set the angles equal to the slack bus or 0° .

- 2. Calculate power mismatch
 - For load buses, calculate $P_i^{[k]}$ (Eq. (2.41)) and $Q_i^{[k]}$ (Eq. (2.42)) injections using the known and estimated system voltages.
 - For generator buses, calculate $P_i^{[k]}$ (Eq. (2.41)) and $\Delta P_i^{[k]}$ (Eq. (2.53)).
- 3. Form the Jacobian matrix
 - Use the various equations for the partial derivatives with respect to the voltage angle and magnitudes (form the Jacobian matrix).
 - The elements of Jacobian matrix $(\mathbf{J}_1, \mathbf{J}_2, \mathbf{J}_3 \text{ and } \mathbf{J}_4)$ calculated from Eqs. (2.45) to (2.52).
- 4. Find the matrix solution
 - Inverse the Jacobian matrix and multiply by the mismatch power.
 - Compute $\Delta \delta$ and $\Delta |V|$.
- 5. Difference in scheduled to calculated power

$$\Delta P_i^{[k]} = P_{i,\text{sch}} - P_i^{[k]}$$
$$\Delta Q_i^{[k]} = Q_{i,\text{sch}} - Q_i^{[k]}$$

6. Find the new estimates for the voltage magnitude and angle

$$\delta_i^{[k+1]} = \delta_i^{[k]} + \Delta \delta_i^{[k]}$$
$$|V_i^{[k+1]}| = |V_i^{[k]}| + \Delta |V_i^{[k]}|$$

7. Repeat the process until the mismatch (residuals) is less than the specified accuracy

$$|\Delta P_i^{[k]}| \le \varepsilon$$
$$|\Delta Q_i^{[k]}| \le \varepsilon$$

- 8. After solving for bus voltages and angles, power flows and losses on the network branches are calculated
 - Transmission lines and transformers are network branches.
 - The direction of positive current flow is defined for a branch element (demonstrated on a medium length line).
 - Power flow is defined for each end of the branch.
 - Example: The power leaving bus *i* and flowing to bus *j* as shown below.

Current and power flows

$$I \to j$$

$$I_{ij} = I_L + I_{i0} = y_{ij}(V_i - V_j) + y_{i0}V_i$$

$$S_{ij} = V_i I_{ij}^* = V_i^2 (y_{ij} + y_{i0})^* - V_i y_{ij}^* V_i^*$$

$$j \to i$$

$$I_{ji} = -I_L + I_{j0} = y_{ij}(V_j - V_i) + y_{j0}V_j$$

$$S_{ji} = V_j I_{ij}^* = V_j^2 (y_{ij} + y_{j0})^* - V_j y_{ij}^* V_i^*$$

\ i

Power loss

$$S_{\text{loss}ij} = S_{ij} + S_{ji}$$

This completes the load flow study. Finally, in Figure 2.13 all the computational steps are summarized in the detailed flow chart.

2.6.3 Advantages and Disadvantages of Newton-Raphson Method

Advantages

Faster, more reliable and yields accurate results, requires less number of iterations.

Disadvantages

Program as well as memory is more complex.

EXAMPLE 2.6 Figure 2.14 shows the one line diagram of a simple threebus system with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are given in the diagram. Line impedances are marked in p.u. on a 100 MVA base and the line charging susceptances are neglected.

- (a) Using the Newton–Raphson method, determine the phasor values of the voltages at the load buses 2 and 3(*PQ* buses) accurate to decimal places.
- (b) Verify the result with Power World Simulator.

Figure 2.14 One line diagram of a simple three-bus system Example 2.6.

Figure 2.13 Flow chart for Newton–Raphson method.

Solution:

(a) Form the
$$Y_{\text{bus}}$$

$$y_{12} = \frac{1}{z_{12}} = \frac{1}{0.02 + j0.04} = 10 - j20$$

$$y_{13} = \frac{1}{z_{13}} = \frac{1}{0.01 + j0.03} = 10 - j30$$

$$y_{23} = \frac{1}{z_{23}} = \frac{1}{0.0125 + j0.025} = 16 - j32$$

$$Y_{11} = y_{12} + y_{13} = (10 - j20) + (10 - j30) = 20 - j50$$

$$Y_{12} = Y_{21} = -y_{12} = -(10 - j20) = -10 + j20$$

$$Y_{13} = Y_{31} = -y_{13} = -(10 - j30) = -10 + j30$$

$$Y_{22} = y_{21} + y_{23} = (10 - j20) + (16 - j32) = 26 - j52$$

$$Y_{23} = Y_{32} = -y_{23} = -(16 - j32) = -16 + j32$$

$$Y_{33} = y_{31} + y_{32} = (10 - j30) + (16 - j32) = 26 - j62$$

$$Y_{bus} = \begin{bmatrix} 20 - j50 & -10 + j20 & -10 + j30 \\ -10 + j20 & 26 - j52 & -16 + j32 \\ -10 + j30 & -16 + j32 & 26 - j62 \end{bmatrix}$$

$$Y_{bus} = \begin{bmatrix} 53.85165 \angle -1.9029 & 22.36068 \angle 2.0344 & 31.62278 \angle 1.8925 \\ 22.36068 \angle 2.0344 & 58.13777 \angle -1.1071 & 35.77709 \angle 2.0344 \\ 31.62278 \angle 1.8925 & 35.77709 \angle 2.0344 & 67.23095 \angle -1.1737 \end{bmatrix}$$

$$Y_{bus} = \begin{bmatrix} 53.85165 \angle -68.2 & 22.36068 \angle 116.6 & 31.62278 \angle 108.4 \\ 22.36068 \angle 116.6 & 58.13777 \angle -63.4 & 35.77709 \angle 116.6 \\ 31.62278 \angle 108.4 & 35.77709 \angle 116.6 & 67.23095 \angle -67.2 \end{bmatrix}$$

Initialize magnitude and angle of bus voltage

$$|V_1| = 1.05, \ \delta_1 = 0.0 \text{ rad}$$

 $|V_2|^{(0)} = 1, \ \delta_2^{(0)} = 0.0 \text{ rad}$
 $|V_3|^{(0)} = 1.04, \ \delta_3^{(0)} = 0.0 \text{ rad}$

In the matrix form

$$\begin{bmatrix} \delta_1^{(0)} \\ V_1^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.05 \end{bmatrix}; \begin{bmatrix} \delta_2^{(0)} \\ V_2^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \begin{bmatrix} \delta_3^{(0)} \\ V_3^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.04 \end{bmatrix}$$

Scheduled powers are

 $P_{2,\text{sch}} = P_{G2} - P_{D2} = 0 - \frac{400}{100} = -4 \text{ p.u.}$ At bus 2, $Q_{2,\text{sch}} = Q_{G2} - Q_{D2} = 0 - \frac{250}{100} = -2.5 \text{ p.u.}$ At bus 3, $P_{3,\text{sch}} = P_{G3} - P_{D3} = \frac{200}{100} - 0 = 2 \text{ p.u.}$

The real power at buses 2 and 3 and reactive power at bus 2 are

$$\begin{split} P_2 &= |V_2||V_1||Y_{21}|\cos(\theta_{21} - \delta_2 + \delta_1) + |V_2^2||Y_{22}|\cos\theta_{22} \\ &+ |V_2||V_3||Y_{23}|\cos(\theta_{23} - \delta_2 + \delta_3) \end{split} \\ P_2 &= (1) \ (1.05) \ (22.36068) \ \cos(116.6 - 0 + 0) + (1)^2 (58.13777) \ \cos(-63.4) \\ &+ (1) \ (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = -1.1414 \cr P_3 &= |V_3||V_1||Y_{31}| \ \cos(\theta_{31} - \delta_3 + \delta_1) + |V_3||V_2||Y_{32}| \ \cos(\theta_{32} - \delta_3 + \delta_2) \\ &+ |V_3^2||Y_{33}| \ \cos\theta_{33} \cr P_3 &= (1.04) \ (1.05) \ (31.62278) \ \cos(108.4 - 0 + 0) \\ &+ (1.04) \ (1) \ (35.77709) \ \cos(116.6 - 0 + 0) + (1.04)^2 \ (67.23095) \ \cos(-67.2) \cr &= 0.5616 \cr Q_2 &= -|V_2||V_1||Y_{21}| \ \sin(\theta_{21} - \delta_2 + \delta_1) - |V_2^2||Y_{22}| \ \sin\theta_{22} \\ &- |V_2||V_3||Y_{23}| \ \sin(\theta_{23} - \delta_2 + \delta_3) \cr Q_2 &= -(1) \ (1.05) \ (22.36068) \ \sin(116.6 - 0 + 0) - (1)^2 \ (58.13777) \ \sin(-63.4) \\ &- (1) \ (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) = -2.28 \end{split}$$

Difference in scheduled to calculated power

$$\begin{split} \Delta P_2^{[0]} &= P_{2,\text{sch}} - P_{2,\text{calc}}^{(0)} = -4 - (-1.1414) = -2.8586 \\ \Delta P_3^{[0]} &= P_{3,\text{sch}} - P_{3,\text{calc}}^{(0)} = 2 - (0.5616) = 1.43846 \\ \Delta Q_2^{[0]} &= Q_{2,\text{sch}} - Q_{2,\text{calc}}^{(0)} = -2.5 - (-2.28) = -0.22 \end{split}$$

The Jacobian matrix is given by

$$\begin{bmatrix} \Delta P_2 \\ \Delta P_3 \\ \Delta Q_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial P_2}{\partial \delta_2} & \frac{\partial P_2}{\partial \delta_3} & \frac{\partial P_2}{\partial |V_2|} \\ \frac{\partial P_3}{\partial \delta_2} & \frac{\partial P_3}{\partial \delta_3} & \frac{\partial P_3}{\partial |V_2|} \\ \frac{\partial Q_2}{\partial \delta_2} & \frac{\partial Q_2}{\partial \delta_3} & \frac{\partial Q_2}{\partial |V_2|} \end{bmatrix} \begin{bmatrix} \Delta \delta_2 \\ \Delta \delta_3 \\ \Delta |V_2| \end{bmatrix}$$

$$\begin{aligned} \frac{\partial P_2}{\partial \delta_2} &= |V_2| |V_1| |Y_{21}| \sin(\theta_{21} - \delta_2 + \delta_1) + |V_2| |V_3| |Y_{23}| \sin(\theta_{23} - \delta_2 + \delta_3) \\ &= (1) \ (1.05) \ (22.36068) \sin(116.6 - 0 + 0) \\ &+ (1) \ (1.04) \ (35.77709) \sin(116.6 - 0 + 0) = 54.2634 \\ \frac{\partial P_2}{\partial \delta_3} &= -|V_1| |V_3| |Y_{23}| \sin(\theta_{23} - \delta_2 + \delta_3) \\ &= -(1) \ (1.04) \ (35.77709) \sin(116.6 - 0 + 0) = -33.2698 \\ \frac{\partial P_2}{\partial |V_2|} &= |V_1| |Y_{21}| \cos(\theta_{21} - \delta_2 + \delta_1) + 2|V_2| |Y_{22}| \cos\theta_{22} \\ &+ |V_3| |Y_{23}| \cos(\theta_{23} - \delta_2 + \delta_3) \end{aligned}$$

$$\begin{array}{l} = (1.05) \ (22.36068) \ \cos(116.6 - 0 + 0) + 2(1) \ (58.13777) \ \cos(-63.4) \\ + (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = 24.890 \\ \hline \partial P_3 \\ = -|V_3||V_2||Y_{32}| \ \sin(\theta_{32} - \delta_3 + \delta_2) \\ = -(1.04) \ (1) \ (35.77709) \ \sin(116.6 - 0 + 0) = -33.2698 \\ \hline \partial P_3 \\ = |V_3||V_1||Y_{31}| \ \sin(\theta_{31} - \delta_3 + \delta_1) + |V_3||V_2||Y_{32}| \ \sin(\theta_{32} - \delta_3 + \delta_2) \\ = (1.04) \ (1.05) \ (31.62278) \ \sin(108.4 - 0 + 0) \\ + (1.04) \ (1) \ (35.77709) \ \sin(116.6 - 0 + 0) = -66.0365 \\ \hline \partial P_4 \\ = |V_3||Y_{21}| \ \cos(\theta_{22} - \delta_3 + \delta_2) \\ = (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = -16.663 \\ \hline \partial Q_2 \\ = |V_2||V_1||Y_{21}| \ \cos(\theta_{21} - \delta_2 + \delta_1) + |V_2||V_3||Y_{23}| \ \cos(\theta_{23} - \delta_2 + \delta_3) \\ = (1) \ (1.05) \ (22.36068) \ \cos(116.6 - 0 + 0) \\ + (1) \ (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = -27.1731 \\ \hline \partial Q_2 \\ = -|V_2||V_3||Y_{23}| \ \cos(\theta_{23} - \delta_2 + \delta_3) \\ = -(1) \ (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = 16.663 \\ \hline \partial Q_2 \\ = -|V_1||Y_{21}| \ \sin(\theta_{21} - \delta_2 + \delta_3) - 2|V_2||Y_{22}| \ \sin(\theta_{22}) \\ - |V_3||Y_{23}| \ \sin(\theta_{23} - \delta_2 + \delta_3) \\ = -(1.05) \ (22.36068) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) - 2(1) \ (58.13777) \ \sin(-63.4) \\ - (1.04) \ (35.77709) \ \sin(16.6 - 0 + 0) - 2(1) \ (58.13777)$$

New bus voltages and angles in the first iteration are

$$\begin{split} \delta_i^{[k+1]} &= \delta_i^{[k]} + \Delta \delta_i^{[k]} \\ \delta_2^{[1]} &= \delta_2^{[0]} + \Delta \delta_2^{[0]} = 0 + (-0.0452) = -0.0452 \\ \delta_3^{[1]} &= \delta_3^{[0]} + \Delta \delta_3^{[0]} = 0 + (-0.0077) = -0.0077 \\ |V_i^{[k+1]}| &= |V_i^{[k]}| + \Delta |V_i^{[k]}| \\ |V_i^{[1]}| &= |V_2^{[0]}| + \Delta |V_2^{[0]}| = 1 + (-0.0266) = 0.9734 \end{split}$$

(b) Verify the result using Power World Simulator (PWS): The one line diagram of a simple bus system is drawn in PWS, which is shown in Figure 2.15.

Figure 2.15 One line diagram of a simple three-bus system.

The first step is the formation of $[Y_{bus}]$ using the inspection method. The calculated $[Y_{bus}]$ values are given in Figure 2.16. Since the given problem is a three-bus system, the size of $[Y_{bus}]$ is 3 × 3 matrix.

X Y Bus (Bus Admittance Matrix)												
□ 臣 サト *ぷ +ぷ ぬ 熱 班 Records ▼ Geo ▼ Set ▼ Columns ▼ 国▼ 鬱▼ 鬱▼ 字 賟▼ 譅 f(x) ▼ 田												
Filter Advanced Bus Find Remove												
	Number	Name	Bus	1	Bus	2	Bus	3				
1	1	1	20.00 - j5	0.00	-10.00 + j	20.00	-10.00 + j	j30.00				
2	2	2	-10.00 + j	20.00	26.00 - j52	2.00	-16.00 + j	32.00				
3	3	3	-10.00 + j	30.00	-16.00 + j	32.00	26.00 - j6	2.00				

Figure 2.16 Y_{bus} result.

Newton-Raphson method

This method is executed by pressing the icon *Newton–Raphson power flow* available in *tools ribbon*. Before executing this method, the number of iterations is to be fixed as 1 in *simulator options ribbon*. The Jacobian values and power flow results are given in Figure 2.17 and Figure 2.18 for the 1st iteration.

110 Electrical Power Systems: Analysis, Security and Deregulation

× Power Flow	Jacobian						
: 🛄 🏪 🚸	:8 :8 🛤 🕯	🏡 🗮 Re	cords • Geo • Set • Column	s • 📴 • 👹 •	「関・宇康	• 🔛 f(x) • 🗄	🗄 🛛 Options 🝷
Filter Adva	nced 🝷 Bus				• Find Ren	nove	
	Number	Name	Jacobian Equation	Angle Bus 2	Angle Bus 3	Volt Mag Bus 2	Volt Mag Bus 3
1	2	2	Real Power	51.71	-31.76	21.24	-16.80
2	3	3	Real Power	-33.03	65.71	-15.32	28.99
3	2	2	Reactive Power	-28.66	17.47	48.23	-30.53
4	3	3	Voltage Magnitude				1.00

Figure 2.17 Jacobian values.

	8 92 B 1	1 3 6			E	us Power	Flows - Case:	: book_sample.PWB	Status	: Blackout Sim	ulator 15 Eva	luation			×
	Case Informa	tion D	aw Onelines	Tools	Options	Add Ons	Window								×
Edit Mode	6	9	85% 110%	Network	-	Δx		Case Description	Power	Flow List	*** 111	III			
Run Mode	Model Explorer	Area/Zo Filters	ne Limit Monitoring	Solution	Details *	Difference Flows	Simulator Options	Custom Case Info	AUXE	xport Format Desi	Bus C View	Substation View	Open Windows *		
Mode			Case Information					Case Data				Views			
□ th ++	18 :3 A	🛤 Rec	ords • Geo • Set	Column	- -	5.9.	♥−−二	f(x) • 🖽 Options	· Power	Flow List					
								Bus I	Flow	s					
BUS	1	1		138	.0	MW	Mvar	MVA	8	1.0500	0.00	1	1		
GENE	RATOR	1			213.	54	136.29	R 253.3							
TO	2	2		1	177.	35	113.36	210.5	0						
TO	3	3		1	36.	18	22.94	42.8	0						
****	Misma	atch	****		213.	54	136.29								
BUS	2	2		138	.0	MW	Mvar	MVA	8	0.9741	-2.70	1	1		
LOAD	1				400.	00	250.00	471.7							
TO	1	1		1	-169.	32	-97.28	195.3	0						
TO	3	3		1	-229.	08 -	139.14	268.0	0						
****	Misma	atch	****		-1.	60	-13.58								
BUS	3	3		138	.0	MW	Mvar	MVA	8	1.0400	-0.45	1	1		
GENE	RATOR	1			200.	00	135.63	R 241.6							
TO	1	1		1	-36.	01	-22.44	42.4	0						
TO	2	2		1	238.	54	158.07	286.2	0						
* * * *	Misma	atch	* * * *		197.	47	135.62								

Figure 2.18 Power flow results and voltages—1st iteration.

The details of convergence are shown in Figure 2.19. The mismatches of real powers and reactive power for each iteration are also clearly indicated. This method takes 2 iterations to converge power flows. The converged values of Jacobian and Power flow results are given in Figure 2.20 and Figure 2.21.

Number:	0 Max P:	286.000 at bus	2 Max O:	22.000 at bus	2
Number:	1 Max P:	2.530 at bus	3 Max O:	13.578 at bus	2
Number:	2 Max P:	0.004 at bus	2 Max Q:	0.001 at bus	2
tion Finish	ed in 0.0	000 Seconds wer Flow Solution	1		

Figure 2.19 Details of convergence.

× Power Flow	Jacobian						
i 🛄 🏪 朴	148 +28 👬 🏘 🔮	💧 🗮 Re	cords * Geo * Set * Column	s * 图 * 歡	・闘・ア曲	* 誑 f(x) * E	Doptions •
Filter Adva	nced 🔹 Bus				• Find Ren	nove	_
	Number	Name	Jacobian Equation	Angle Bus 2	Angle Bus 3	Volt Mag Bus 2	Volt Mag Bus 3
1	2	2	Real Power	51.60	-31.69	21.15	-16.73
2	3	3	Real Power	-32.93	65.60	-15.35	28.96
3	2	2	Reactive Power	-28.55	17.40	47.95	-30.47
4	3	3	Voltage Magnitude				1.00

Figure 2.20 Jacobian values.

	1 19 B 1		(() ;			Bus Pow	er Flows - Case: t	oook_sample.PWB	Status:	: Blackout Sim	ulator 15 Eva	luation				- 1	= x
۲	Case Informa	tion Drav	v Onelines	Tools	Options	Add O	ns Window								۲	- 0	, x
Edit Mode	6	9	85% 10%	Network	• ion •	à		Case Description Case Summary	Power Quick I	Flow List Power Flow List	*** 2 <u>*</u> 1	III					
Run Mode	Model Explorer	Area/Zone Filters	Limit Monitoring	Solution	Details *	Differe	nce Simulator	Custom Case Info	AUX E	xport Format Desi	Bus View	Substation View	Open Windows *				
Mode		Ca	ise Information					Case Data				Views					
1	18 /3 M	Record	ls • Geo • Set	t • Column	s • 🖽 •	#: 생	8- 9 助- 罷:	f(x) • 🖽 Options	-								
BUS	1	1		138	.0	MW	Mvar	MVA	8	1.0500	0.00	1	1				_
GENE	RATOR	1			218	.42	140.85R	259.9									
TO	2	2		1	179	.36	118.73	215.1	0								
TO	3	3		1	39	.06	22.12	44.9	0								
* * * *	Misma	atch *	* * *		218	.42	140.85										
BUS	2	2		138	.0	MW	Mvar	MVA	8	0.9717	-2.70	1	1				
LOAL) 1				400	.00	250.00	471.7									
TO	1	1		1	-170	.97	-101.95	199.1	0								
TO	3	3		1	-229	.03	-148.05	272.7	0								
BUS	3	3		138	.0	MW	Mvar	MVA	8	1.0400	-0.50	1	1				
GENE	RATOR	1			200	.00	146.18R	247.7									
TO	1	1		1	-38	.87	-21.57	44.5	0								
то	2	2		1	238	.88	167.75	291.9	0								
****	Misma	atch *	***		200	.00	146.18										

Figure 2.21 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in Figure 2.22.

Figure 2.22 One line diagram of a simple three-bus system.

Once the data are entered in the software it can be executed by the above three power flow methods. Figure 2.23 shows the converged results obtained by the Gauss–Seidel method. This window is generated from *bus based report*.

The Newton–Raphson method is executed and the power flow results are shown in Figure 2.23.

2.7 Fast Decoupled Load Flow Method

The Fast Decoupled Load Flow (FDLF) method is one of the improved methods, which was based on the simplification of the Newton–Raphson method and reported by Stott and Alsac in 1974. This method due to its simplifications

	-	7	$\tilde{\omega}$	
ER BRANCHES	XZONEX 1 1 1	XZONEX 1 1 1	XZONEX 1 1 1	
ANSFORMERS DN-TRANSFORM	XAREAX 1 1 1	XAREAX 1 1 1	XAREAX 1 1 1	.bd
MVA FOR TR I FOR NC	JOSSESX MVAR 16.78 0.55	.0SSESX MVAR 16.78 19.69	OSSESX MVAR 0.55 19.69	ort / tphson methc
[% [%	XL MW 8.39 0.18	XI MW 8.39 9.85	XL MW 0.18 9.85	Rep on-Ra
11:50 RATING SET A	0.00	-2.70	-0.50	ig Newto
V 27 2011	6 1.050PU 50 kV	6 0.9717PU kV	6 1.0400PU 48 kV	results usir
n, JUN	91 26 9 26	A - 0 -	A 5 2 9	erged
Moi	MV 259. 215. 44.	MV 471. 199. 272.	MV 247. 44. 291.	Conv
IR S®E	MVAR 140.8R 118.7 22.1	MVAR 250.0 -101.9 -148.0	MVAR 146.2R -21.6 167.7	re 2.23
E POWF ORPSS	MW 218.4 179.3 39.1	MW 400.0 -171.0 -229.0	MW 200.0 -38.9 238.9	Figu
LACTIV MULAT	CKT 1 1	CKT 1 1	CKT 1 1	r r
PTI INTER SYSTEM SII	1 SLACK BUS DM GENERATION 2 LOAD BUS 3 GEN BUS	2 LOAD BUS LOAD-PQ 1 SLACK BUS 3 GEN BUS	3 GEN BUS DM GENERATION 1 SLACK BUS 2 LOAD BUS	, ,
	BUS FR(TO TO	BUS TO TO TO	BUS FR(TO TO	ŕ

of calculations, fast convergence and reliable results became the most widely used method in load flow analysis.

However, FDLF for some cases, where high R/X ratios or heavy loading (low voltage) at some buses are present, does not converge well. For these cases, many efforts and developments have been made to overcome these convergence obstacles. Some of them targeted the convergence of systems with high R/X ratios, others those with low voltage buses. However, one of the most recent developments is a Robust Fast Decoupled Load Flow developed by Wang and Li; it is based on heuristic justification and general voltage normalization methods and solves both high R/X ratios and low bus voltage problem simultaneously.

This method exploits the property of the power system wherein real power flow-voltage angle ($P = (V_1V_2/X_1)\sin\delta$) and reactive power flow-voltage magnitude are loosely ($Q = (V_1V_2/X)\cos\delta - (V_2^2/X)$) coupled.

As the FDLF is derived from the Newton–Raphson method, we will start from the matrix representation of Newton–Raphson and apply some simplifications and approximations to reach the equations of the FDLF.

The matrix representation of the Newton-Raphson method is:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2.57)

Elements of Jacobian matrix J_1

(i) the diagonal elements are

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j)$$
(2.58)

(ii) the off-diagonal elements are

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i||V_j||Y_{ij}|\sin\left(\theta_{ij} - \delta_i + \delta_j\right) \qquad j \neq i$$
(2.59)

Elements of Jacobian matrix J_2

(i) the diagonal elements are

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos\theta_{ii} + \sum_{j\neq i} |V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.60)

(ii) the off-diagonal elements are

$$\frac{\partial P_i}{\partial |V_j|} = |V_i||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.61)

Elements of Jacobian matrix J_3

(i) the diagonal elements are

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.62)

(ii) the off-diagonal elements are

$$\frac{\partial Q_i}{\partial \delta_j} = -|V_i||V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.63)

Elements of Jacobian matrix J_4

(i) the diagonal elements are

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin\theta_{ii} - \sum_{j\neq i}|V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j)$$
(2.64)

(ii) the off-diagonal elements are

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(2.65)

Now, for typical power system branches:

$$X/R \gg 1 \text{ and } \theta_{ii} < 20^{\circ}$$
 (2.66)

These two approximations will cause a weak coupling between ΔP and ΔV , and between ΔQ and $\Delta \delta$, hence \mathbf{J}_2 and \mathbf{J}_3 entries of the initial matrix of equation (2.57) can be ignored leading to the following decoupled equations:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & 0 \\ 0 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2.67)

$$[\Delta P] = [J_1][\Delta \delta] = \left[\frac{\partial P}{\partial \delta}\right][\Delta \delta]$$
(2.68)

$$[\Delta Q] = [J_4][\Delta|V|] = \left[\frac{\partial Q}{\partial|V|}\right][\Delta|V|]$$
(2.69)

Equations (2.68) and (2.69) show that the matrix equations are separated into two decoupled equations requiring considerably less time to solve compared to the time required for the solution of Eq. (2.57).

Furthermore, considerable simplifications can be made to eliminate the need for recalculating J_1 and J_4 during iteration.

The elements of Jacobian matrix J_1 are as follows.

The diagonal elements are

$$\frac{\partial P_i}{\partial \delta_j} = \sum_{j=1}^n |V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) - |V_i|^2 |Y_{ii}| \sin(\theta_{ii})$$
$$\frac{\partial P_i}{\partial \delta_j} = -Q_i - |V_i|^2 |Y_{ii}| \sin(\theta_{ii})$$
$$\frac{\partial P_i}{\partial \delta_j} = -Q_i - |V_i|^2 B_{ii}$$

Now, the diagonal elements of J_1 can be written as

$$\frac{\partial P_i}{\partial \delta_i} = -Q_i - |V_i|^2 B_{ii}$$
(2.70)

where $B_{ii} = |Y_{ii}| \sin \theta_{ii}$ is the imaginary part of the diagonal elements of the bus admittance matrix Y_{bus} .

Further simplifications can be applied to Eq. (2.70), by considering

$$B_{ii} \gg Q_i \text{ and } |V_i|^2 \approx |V_i|$$

 $\frac{\partial P_i}{\partial \delta_i} = -|V_i| B_{ii}$ (2.71)

Also, as under normal operating conditions $\delta_j - \delta_i$ is quite small, therefore $\theta_{ij} - \delta_i + \delta_j \approx \theta_{ij}$ and $|V_j| \approx 1$. The off-diagonal elements of \mathbf{J}_1 can be written as

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i||V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \qquad \therefore |V_j| \approx 1$$
$$= -|V_i||Y_{ij}|\sin(\theta_{ij})$$
$$\frac{\partial P_i}{\partial \delta_j} = -|V_i|B_{ij} \qquad (2.72)$$

Similarly, the diagonal elements of J_4 may be written as

$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i||Y_{ii}|\sin\theta_{ii} - \sum_{j=1}^n |V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j)$$

Multiplying the above equation by $|V_i|$, we get

$$|V_{i}| \times \frac{\partial Q_{i}}{\partial |V_{i}|} = -|V_{i}|^{2} |Y_{ii}| \sin \theta_{ii} - \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \sin (\theta_{ij} - \delta_{i} + \delta_{j}) = -|V_{i}|^{2} B_{ii} + Q_{i}$$

Again, since $B_{ii} \gg Q_i$, Q_i may be neglected

$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i|B_{ii} \tag{2.73}$$

The off-diagonal elements of \mathbf{J}_4 are

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j)$$

Again assume $\theta_{ij} - \delta_i + \delta_j \approx \theta_{ij}$

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i| |Y_{ij}| \sin \theta_{ij}$$

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i| B_{ij} \qquad (2.74)$$

Applying these assumptions to Eqs. (2.68) and (2.69), we get

$$\frac{\partial P_i}{\partial \delta_i} = -|V_i| B_{ii} \quad \text{or} \quad \frac{\Delta P_i}{\Delta \delta_i} = -|V_i| B_{ii}$$

$$\frac{\Delta P_i}{|V_i|} = -B_{ii} \Delta \delta_i$$

$$\frac{\Delta P}{|V_i|} = -B' \Delta \delta_i \quad (2.75)$$

Similarly,

$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i|B_{ii} \quad \text{or} \quad \frac{\Delta Q_i}{\Delta |V_i|} = -|V_i|B_{ii}$$

$$\frac{\Delta Q_i}{\Delta |V_i|} = -B_{ii}\Delta |V_i|$$

$$\frac{\Delta Q}{|V_i|} = -B''\Delta |V_i| \quad (2.76)$$

where, B' and B'' are the imaginary part of the bus admittance matrix Y_{bus} , such that B' contains all buses admittance except those related to the slack bus, and B'' is B' deprived from all voltage controlled buses related admittances.

Finally, all these approximations and simplifications lead to the following successive voltage magnitude and voltage angle updating equations.

$$\Delta \delta = -[B']^{-1} \frac{\Delta P}{|V|} \tag{2.77}$$

$$\Delta V = -\left[B^{\prime\prime}\right]^{-1} \frac{\Delta Q}{|V|} \tag{2.78}$$

FDLF technique is very useful in contingency analysis where numerous outages are to be simulated or a load flow solution is required for online control.

The algorithm written according to the equations derived in the previous section is as follows:

- Step 1: Create the bus admittance matrix $[Y_{bus}]$.
- Step 2: Detect all kinds and numbers of buses and setting all bus voltages to an initial value of 1 p.u., all voltage angles to 0, and the iteration counter *iter* to 0.
- Step 3: Create the matrices B' and B'' according to Eqs. (2.75) and (2.76).
- Step 4: If max $(\Delta P, \Delta Q) \leq \text{accuracy}$

$$\Delta P_i^{[k]} = P_{i,\text{sch}} - P_i^{[k]}$$
$$\Delta Q_i = Q_{i,\text{sch}} - Q_i^{[k]}$$

then go to Step 6

else

(i) Calculate J_1 and J_4 elements of Eqs. (2.71), (2.72), (2.73) and (2.74).

$$\frac{\partial P_i}{\partial \delta_i} = -|V_i|B_{ii} \qquad \frac{\partial P_i}{\partial \delta_j} = -|V_i|B_{ij}$$
$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i|B_{ii} \qquad \frac{\partial Q_i}{\partial |V_j|} = -|V_i|B_{ij}$$

- (ii) Calculate the real and reactive powers at each bus, and check if MVAR of generator buses are within the limits, otherwise update the voltage magnitude at these buses by ± 2 %.
 - If $Q_{i,\min} < Q_i < Q_{i,\max}$, calculate $P_i^{(k)}$

If
$$Q_i^{[k]} > Q_{i,\max}$$
, $Q_{i,\mathrm{sch}} = Q_{i,\max}$

If
$$Q_i^{[k]} < Q_{i,\min}$$
, $Q_{i,\mathrm{sch}} = Q_{i,\min}$

The PV bus will act as PQ bus.

(iii) Calculate the power residuals, ΔP and ΔQ .

$$\Delta P_i^{[k]} = P_{i,\text{sch}} - P_i^{[k]}$$
$$\Delta Q_i^{[k]} = Q_{i,\text{sch}} - Q_i^{[k]}$$

(iv) Calculate the bus voltage and voltage angle updates ΔV and $\Delta \delta$.

$$[\Delta \delta_i]^{(k)} = -[B']^{-1} \frac{\Delta P_i^{[k]}}{|V_i|}$$
$$[\Delta V_i]^{(k)} = -[B'']^{-1} \frac{\Delta Q_i^{[k]}}{|V_i|}$$

(v) Update the voltage magnitude V and the voltage angle δ at each bus.

$$\begin{split} \delta_i^{[k+1]} &= \delta_i^{[k]} + \Delta \delta_i^{[k]} \\ |V_i^{[k+1]}| &= |V_i^{[k]}| + \Delta |V_i^{[k]}| \end{split}$$

- (vi) Increment of the iteration counter iter = iter + 1
- Step 5: If iter \leq maximum number of iteration

$$\begin{aligned} |\Delta P_i^{[k]}| &\leq \varepsilon \\ |\Delta Q_i^{[k]}| &\leq \varepsilon \end{aligned}$$

then go to Step 4

else print out 'Solution did not converge' and go to Step 6.

Step 6: Print out of the power flow solution, computation and display of the line flow and losses.

This completes the load flow study. Finally, in Figure 2.24 all the computational steps are summarized in the detailed flow chart.

Figure 2.24 Flow chart for FDLF method.

EXAMPLE 2.7 Figure 2.25 shows the one line diagram of a simple threebus system with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 p.u. The scheduled loads at buses 2 and 3 are given in the diagram. Line impedances are marked as n p.u. on a 100 MVA base and the line charging susceptances are neglected.

- (a) Using the fast decoupled load flow method, determine the phasor values of the voltages at the load buses 2 and 3(PQ bus) accurate to decimal places.
- (b) Verify the result with Power World Simulator and PSS/E.

Figure 2.25 One line diagram of a simple three-bus system.

Solution: (a) Form the Y_{bus}

$$y_{12} = \frac{1}{z_{12}} = \frac{1}{0.02 + j0.04} = 10 - j20$$

$$y_{13} = \frac{1}{z_{13}} = \frac{1}{0.01 + j0.03} = 10 - j30$$

$$y_{23} = \frac{1}{z_{23}} = \frac{1}{0.0125 + j0.025} = 16 - j32$$

$$Y_{11} = y_{12} + y_{13} = (10 - j20) + (10 - j30) = 20 - j50$$

$$Y_{12} = Y_{21} = -y_{12} = -(10 - j20) = -10 + j20$$

$$Y_{13} = Y_{31} = -y_{13} = -(10 - j30) = -10 + j30$$

$$Y_{22} = y_{21} + y_{23} = (10 - j20) + (16 - j32) = 26 - j52$$

$$Y_{23} = Y_{32} = -y_{23} = -(16 - j32) = -16 + j32$$

$$Y_{33} = y_{31} + y_{32} = (10 - j30) + (16 - j32) = 26 - j62$$

$$Y_{bus} = \begin{bmatrix} 20 - j50 & -10 + j20 & -10 + j30 \\ -10 + j20 & 26 - j52 & -16 + j32 \\ -10 + j30 & -16 + j32 & 26 - j62 \end{bmatrix}$$

Bus 1 is slack bus and the corresponding bus susceptance matrix for evaluation of phase angle $\Delta \delta_2$ and $\Delta \delta_3$ is

$$B' = \begin{bmatrix} -52 & 32\\ 32 & -62 \end{bmatrix}$$

The inverse of the above matrix is

$$\begin{bmatrix} B' \end{bmatrix}^{-1} = \begin{bmatrix} -0.028182 & -0.014545 \\ -0.014545 & -0.023636 \end{bmatrix}$$

Initialize magnitude and angle of bus voltage

$$|V_1| = 1.05, \ \delta_1 = 0.0 \text{ rad}$$

 $|V_2|^{(0)} = 1, \ \delta_2^{(0)} = 0.0 \text{ rad}$
 $|V_3|^{(0)} = 1.04, \ \delta_3^{(0)} = 0.0 \text{ rad}$

In the matrix form

$$\begin{bmatrix} \delta_1^{(0)} \\ V_1^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.05 \end{bmatrix}; \begin{bmatrix} \delta_2^{(0)} \\ V_2^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \begin{bmatrix} \delta_3^{(0)} \\ V_3^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.04 \end{bmatrix}$$

Scheduled powers are

at bus 2,

$$P_{2,\text{sch}} = P_{G2} - P_{D2} = 0 - \frac{400}{100} = -4 \text{ p.u.}$$
$$Q_{2,\text{sch}} = Q_{G2} - Q_{D2} = 0 - \frac{250}{100} = -2.5 \text{ p.u.}$$
$$P_{3,\text{sch}} = P_{G3} - P_{D3} = \frac{200}{100} - 0 = 2 \text{ p.u.}$$

at bus 3,

The real power at buses 2 and 3 and reactive power at bus 2 are

$$\begin{split} P_2 &= |V_2||V_1||Y_{21}|\cos(\theta_{21} - \delta_2 + \delta_1) + |V_2^2||Y_{22}|\cos\theta_{22} \\ &+ |V_2||V_3||Y_{23}|\cos(\theta_{23} - \delta_2 + \delta_3) \\ P_2 &= (1) \ (1.05) \ (22.36068) \ \cos(116.6 - 0 + 0) + (1)^2 (58.13777) \ \cos(-63.4) \\ &+ (1) \ (1.04) \ (35.77709) \ \cos(116.6 - 0 + 0) = -1.1414 \\ P_3 &= |V_3||V_1||Y_{31}| \ \cos(\theta_{31} - \delta_3 + \delta_1) + |V_3||V_2||Y_{32}| \ \cos(\theta_{32} - \delta_3 + \delta_2) \\ &+ |V_3^2||Y_{33}| \ \cos\theta_{33} \\ P_3 &= (1.04) \ (1.05) \ (31.62278) \ \cos(108.4 - 0 + 0) \\ &+ (1.04) \ (1) \ (35.77709) \ \cos(116.6 - 0 + 0) + (1.04)^2 (67.23095) \ \cos(-67.2) \\ &= 0.5616 \\ Q_2 &= -|V_2||V_1||Y_{21}| \ \sin(\theta_{21} - \delta_2 + \delta_1) - |V_2^2||Y_{22}| \ \sin\theta_{22} \\ &- |V_2||V_3||Y_{23}| \ \sin(\theta_{23} - \delta_2 + \delta_3) \\ Q_2 &= -(1) \ (1.05) \ (22.36068) \ \sin(116.6 - 0 + 0) - (1)^2 (58.13777) \ \sin(-63.4) \\ &- (1) \ (1.04) \ (35.77709) \ \sin(116.6 - 0 + 0) = -2.28 \end{split}$$

Difference in scheduled to calculated power

$$\Delta P_2^{[0]} = P_{2,\text{sch}} - P_{2,\text{calc}}^{(0)} = -4 - (-1.1414) = -2.8586$$

$$\Delta P_3^{[0]} = P_{3,\text{sch}} - P_{3,\text{calc}}^{(0)} = 2 - (0.5616) = 1.43846$$

$$\Delta Q_2^{[0]} = Q_{2,\text{sch}} - Q_{2,\text{calc}}^{(0)} = -2.5 - (-2.28) = -0.22$$

The FDLF algorithm given by Eq. (2.77) becomes

$$\begin{split} \left[\Delta\delta_{i}\right]^{(k)} &= -\left[B'\right]^{-1} \frac{\Delta P_{i}^{[k]}}{|V_{i}|} \\ \left[\delta_{2}^{(0)}\right]_{\delta_{3}^{(0)}} &= -\left[B'\right]^{-1} \begin{bmatrix}\frac{\Delta P_{2}^{[0]}}{|V_{2}|} \\ \frac{\Delta P_{3}^{[0]}}{|V_{3}|}\end{bmatrix} \\ \left[\delta_{2}^{(0)}\right]_{\delta_{3}^{(0)}} &= -\left[-0.028182 - 0.014545 \\ -0.014545 - 0.023636\right] \begin{bmatrix}\frac{-2.8586}{1.0} \\ \frac{1.43846}{1.04}\end{bmatrix} \\ &= \begin{bmatrix}-0.028182 - 0.014545 \\ -0.014545 - 0.023636\end{bmatrix} \begin{bmatrix}-2.8586 \\ 1.3831\end{bmatrix} \\ &= \begin{bmatrix}-0.060483 \\ -0.008909\end{bmatrix} \end{split}$$

Since bus 3 is a regulated bus, the corresponding row and column of B' are eliminated and we get

$$B'' = [-52]$$
$$[B'']^{-1} = \frac{-1}{52} = -0.01923$$
$$[\Delta V_i]^{(k)} = -[B'']^{-1} \frac{\Delta Q_i^{[k]}}{|V_i|}$$
$$[\Delta V_2]^{(0)} = -[B'']^{-1} \frac{\Delta Q_0^{[0]}}{|V_2|}$$
$$[\Delta V_2]^{(0)} = -(-0.01923) \left[\frac{-0.22}{1.0}\right] = -0.0042308$$

The new bus voltages and the angles in the first iteration are

$$\begin{split} \delta_i^{[k+1]} &= \delta_i^{[k]} + \Delta \delta_i^{[k]} \\ \delta_2^{[1]} &= \delta_2^{[0]} + \Delta \delta_2^{[0]} = 0 + (-0.060483) = -0.060483 \\ \delta_3^{[1]} &= \delta_3^{[0]} + \Delta \delta_3^{[0]} = 0 + (-0.008909) = -0.008909 \\ |V_i^{[k+1]}| &= |V_i^{[k]}| + \Delta |V_i^{[k]}| \end{split}$$

$$|V_2^{[1]}| = |V_2^{[0]}| + \Delta |V_2^{[0]}| = 1 + (-0.0042308) = 0.99577$$

(b) Verify the result using Power World Simulator: The one line diagram of a simple bus system drawn in PWS is shown in Figure 2.26.

Figure 2.26 One line diagram of a simple three-bus system.

The first step is the formation of $[Y_{bus}]$ using the inspection method. The calculated $[Y_{bus}]$ values are given in Figure 2.27. Since the given problem is a three-bus system, the size of $[Y_{bus}]$ is 3 × 3 matrix.

X Y Bus (Bus Admittance Matrix)												
: 🛄 🎬 🚸	[圓 曲 11* 128 #28 桷 魏 坩 Records ▼ Geo ▼ Set ▼ Columns ▼ 国▼ 鬱▼ 鬱▼ 〒 賟▼ 瀧 f(x) ▼ 田											
Filter Advanced Bus · Find Remove												
	Number	Name	Bus	1	Bus	2	Bus	3				
1	1	1	20.00 - j5	0.00	-10.00 + j2	20.00	-10.00 +	j30.00				
2	2	2	-10.00 + j	20.00	26.00 - j52	.00	-16.00 +	j32.00				
3	3	3	-10.00 + j	30.00	-16.00 + j3	32.00	26.00 - j6	2.00				

Figure 2.27 Y_{bus} result.

This method is executed by pressing the icon *fast decoupled* available in *tools ribbon*. Before executing this method, the number of iterations is to be fixed as 1 in *simulator options ribbon*.

The same problem has been executed by the fast decoupled method. The converged results are given in Figure 2.28. The converged power flow results for Gauss–Seidel, Newton–Raphson and fast decoupled are shown in Figures 2.8, 2.21 and 2.28. The power flow results are the same for all methods, but the results are converged quickly by Newton–Raphson method, i.e. by two iterations.

	8	5 H (⊗ = Bus	Power	Flows	- Case: boo	ok_sample.PWE	S	atus: Runni	ing (PF)	Simu.		e x
	Case Info	ormatio	n Draw	Onelines	Tools	Optic	ons Add On:	s Window					. @	e x
Edit Mode Run Mode Mode	e 卧Mod 字 Area 筆Limi	el Explo a/Zone I t Moniti C	orer Filters oring ase Inforn	Network • Aggregation Solution Deta nation	ails •	Differe	nce Flows + ator Options	Case Description Case Summary Custom Case Info. Case Data	F	Power Flow List Quick Power Flo AUX Export For	 w List mat Desc	計Bus 可Subs 器Oper	View station Vie n Windows Views	w s *
🖸 🛍 🕪	**********	4 28	Records •	Geo 🔹 Set	 Colum 	ns 🕶 🖪		₹ 興• 瀧 f(x) • 目	8 1	Options •				
										Bus Flo	WS			
BUS	1	1		13	8.0	MW	Mvar	MVA	용	1.0500	0.00	1	1	
GENE	RATOR	1			218	.35	140.91	R 259.9						
TO	2	2		1	179	.35	118.77	215.1	0					
TO	3	3		1	39	.00	22.14	44.8	0					
* * * *	Misma	atch	****		218	.35	140.91							
BUS	2	2		13	8.0	MW	Mvar	MVA	융	0.9717	-2.70	1	1	
LOAD	1				400	.00	250.00	471.7						
TO	1	1		1	-170	.95	-101.98	199.1	0					
TO	3	3		1	-229	.07	-148.08	272.8	0					
BUS	3	3		13	8.0	MW	Mvar	MVA	용	1.0400	-0.50	1	1	
GENE	RATOR	1			200	00.00	146.19	R 247.7						
TO	1	1		1	-38	.82	-21.59	44.4	0					
TO	2	2		1	238	.92	167.78	291.9	0					
* * * *	Misma	atch	* * * *		199	.90	146.19							

Figure 2.28 Converged power flow results and voltages.

PSS/E

The same problem is taken and drawn in PSS/E software and it is given in Figure 2.29.

Figure 2.29 One line diagram of a simple three-bus system.

Once the data are entered in the software it can be executed by the above three power flow methods. Figure 2.30 shows the converged results obtained by the fast decoupled method. This window is generated from *bus based report*.

The fast decoupled method is executed and the power flow results are shown in Figure 2.30.

	-		0				З				
ER BRANCHES	XZONEX 1 1	1	XZONEX 1		1	1	XZONEX	1	1	1	
LANSFORMERS NN-TRANSFORM	XAREAX 1 1	1	XAREAX 1		1	1	XAREAX	1	1	1	
/A FOR TR FOR NC	SSESX MVAR 16.79	0.55	SSESX MVAR		16.79	19.69	SSESX	MVAR	0.55	19.69	ed method
%I	XL0 MW 8.39	0.18	XLO: MW		8.39	9.85	XLO	MM	0.18	9.85	decouple
12:00 RATING SET A	0.00		-2.70				-0.50				ng fast e
N 27 2011 I	% 1.050PU 60 kV		% 0.9717PU kV				% 1.0400PU	48 kV			d results usi
Mon, JU	MVA 259.9 2 215.1	44.9	MVA	471.7	199.1	272.7	MVA	247.7 2	44.5	291.9	Converge
R ®E	MVAR 140.9R 118.7	22.1	MVAR	250.0	-102.0	-148.1	MVAR	146.2R	-21.6	167.7	ure 2.30
E POWE ORPSS	MW 218.4 179.4	39.0	MM	400.0	-171.0	-229.0	MM	200.0	-38.9	238.9	Fig
LACTIV	CKT 1	1	CKT		1	1	CKT		-	1	
PTI INTER SYSTEM SI	1 SLACK BUS M GENERATION 2 LOAD BUS	3 GEN BUS	2 LOAD BUS	COAD-PQ	1 SLACK BUS	3 GEN BUS	3 GEN BUS	M GENERATION	1 SLACK BUS	2 LOAD BUS	
	BUS FRO TO	TO	BUS	TO I	TO	TO	BUS	FRO	TO	TO	

2.8 Comparison of the Gauss-Seidel, Newton-Raphson and Fast Decoupled Methods of Load Flow Study

S.No.	Gauss-Seidel	Newton-Raphson	Fast decoupled
1.	Requires a large	Requires a less	Requires a more number
	number of iterations	number of iterations	of iterations than Newton-
	to reach convergence.	to reach convergence.	Raphson method.
2.	Computation time per	Computation time per	Computation time per
	iteration is less.	iteration is more.	iteration is less.
3.	It has linear	It has quadratic	—
	convergence	convergence	
	characteristics.	characteristics.	
4.	The number of	The number of	The number of iterations
	iterations required for	iterations are	does not depend on the
	convergence increases	independent of the	size of the system.
	with the size of the	size of the system.	
	system.		
5.	Less memory required.	More memory	Less memory required than
		required.	Newton-Raphson method.

Review Questions

Part-A

- 1. What is the power flow study or load flow study?
- **2.** What are the scraps of information that are obtained from the load flow study?
- 3. What is the need for load flow study?
- 4. What are the quantities associated with each bus in a system?
- 5. What are the different types of buses in a power system? Or, how are the buses classified and what are its types?
- 6. What is the need for slack bus?
- 7. Why do we go for iterative methods to solve the load flow problems?
- 8. What are the methods mainly used for the solution of load flow study?
- 9. What do you mean by a flat voltage start?
- 10. Discuss the effect of acceleration factor in load flow study.
- 11. When is the generator bus treated as load bus?
- 12. What are the advantages and disadvantages of Gauss-Seidel method?
- 13. What are the advantages and disadvantages of Newton-Raphson method?
- **14.** Compare the Gauss–Seidel and the Newton–Raphson methods of load flow study.

Part-B

1. The system data for a load flow solution are given in the following tables. Determine the voltages at the end of first iteration by Gauss–Seidel method. Take $\alpha = 1.6$. Verify the result with Power World Simulator.

	Bus code	<i>R</i> in p.u.	X in	p.u.
	1–2	0.05	0.1	5
	1–3	0.10	0.3	0
	1–4	0.20	0.4	0
	2–4	0.10	0.3	0
	3–4	0.05	0.1	5
Bus cod	e P	Q	V	Remarks
1			1.05	Slack bus
2	0.5	-0.2		PQ bus
3	-1.0	0.5	—	PQ bus
4	0.3	-0.1	_	PQ bus

 The system contains six buses. The bus data, branch data and generator data are given below. The system data are prepared and the power flows are solved by Newton-Raphson method using Power World Simulator.

Bus data								
Bus	Туре	V	δ	P_{g}	Q_g	P_L	Q_L	Nominal
		p.u.	degree	MŴ	p.u.	p.u.	p.u.	voltage
								<i>in</i> kV
1	Swing	1.05	0	—		_	—	230
2	Generator	1.05		66.368	0	0.0	0.0	230
3	Generator	1.07		77.473		0.0	0.0	230
4	Load	1.00		0	0	70	70	230
5	Load	1.00		0	0	70	70	230
6	Load	1.00	_	0	0	70	70	230

Line data

From Bus	To bus	<i>R</i> p.u.	<i>X</i> p.u.	<i>B</i> p.u.	Max. MVA p.u.
1	2	0.20	0.20	0.02	40
1	4	0.05	0.20	0.02	60
1	5	0.08	0.30	0.03	40
2	3	0.05	0.25	0.03	40
2	4	0.05	0.10	0.01	60
2	5	0.10	0.30	0.02	30
2	6	0.07	0.20	0.025	90
3	5	0.12	0.26	0.025	70
3	6	0.02	0.10	0.01	80
4	5	0.20	0.40	0.04	20
5	6	0.10	0.30	0.03	40

3. A one line diagram of the system is shown in the figure below. The system contains seven buses. The bus data, branch data and generator data are given below. The system data are prepared and the power flows are solved by Newton–Raphson method or fast decoupled method using **Power World Simulator software**.

Generator ratings

 G_1 : 100 MVA, 13.8 kV, X'' = 0.12, $X_2 = 0.14$, $X_0 = 0.05$ p.u. G_2 : 100 MVA, 13.8 kV, X'' = 0.12, $X_2 = 0.14$, $X_0 = 0.05$ p.u.

Generator neutrals are solidly grounded.

Transformer ratings

*T*₁: 100 MVA, 13.8 kV Δ /230 kV Y, *X* = 0.1 p.u. *T*₂: 200 MVA, 15 kV Δ /230 kV Y, *X* = 0.1 p.u.

Generator neutrals are solidly grounded

Transmission line ratings

All lines: 230 kV, $Z_1 = 0.08 + j0.5 \ \Omega/\text{km}$, $Z_0 = 0.2 + j1.5 \ \Omega/\text{km}$, $y_1 = j3.3 \times 10^{-6} \text{ s/km}$ $L_1 = 15 \text{ km}$, $L_2 = 25 \text{ km}$, $L_3 = 40 \text{ km}$, $L_4 = 15 \text{ km}$, $L_5 = 50 \text{ km}$

Power flow data

Bus 1: Swing bus, $V_1 = 13.8$ kV Buses 2, 3, 4, 5, and 6: Load buses Bus 7: Voltage control bus, $V_7 = 15$ kV, $P_{G7} = 180$ MW, -87 MVAR $< Q_{G7} < +87$ MVAR

System base quantities

 $S_{\text{base}} = 100$ MVA, three phase, $V_{\text{base}} = 13.8$ kV in the zone of G_1